Nano Science, Technology and Industry Scoreboard

British Company Launches Product Range That Reduces the Spread of Viruses by Touch

$$
\begin{aligned}
& \text { 2020-11-21 } \\
& \text { London based Veraco has designed and manufactured a range of } \\
& \text { Antimicrobial adhesive pads and wraps to be used on frequently touched } \\
& \text { surfaces, such as door handles, shopping trolleys and handrails. They use } \\
& \text { 'Silver lons' technology which works by breaking down the biological } \\
& \text { make-up of micro organisms, in order to stop the spread and } \\
& \text { reproduction of dangerous pathogens. }
\end{aligned}
$$

The products kill up to 99.99\% of common bacteria as well as being effective against Coronavirus. Antimicrobial silver technology is not new and has been used in paints and coatings for hospitals, but until now no one has produced a versatile range of solutions that can easily be installed anywhere.

Several studies have shown that viruses, including COVID19, can survive on surfaces for days and whilst we are all much more careful about washing our hands sometimes people will forget. These products work 24/7 instantaneously on touch and for up to 2 years after installation. They are already working with the NHS, Toyota, London Metropolitan University and COS.

Co-Founder George Strong said, "In a post-COVID world we are going to be far more hygiene conscious. People will continue to avoid touching public doors, handles, screens etc as best they can and there will be continued expectations on business to support that change in behaviour. This pandemic has changed hygiene standards and we see our products as part of setting that standard across the world."

Co-Founder Charles Churchman said, "We knew the technology worked but we wanted to also create products that looked good and were really easy to use. We have a range of different shapes and sizes, and we can also produce customised designs for our trade customers. In the future, there is no reason why any frequently touched surface wouldn't be protected"

Read the original article on AZoNano.

