Hollow Nanoparticles Linked by DNA Make Unusually Strong Materials

Hollow Nanoparticles Linked by DNA Make Unusually Strong Materials

Particles that are too small to be assembled into materials with conventional methods can be bound together with DNA molecules – the result is clumps of unusually strong and stiff material

A material made from hollow nanoparticles and DNA is exceptionally strong, especially considering how small its building blocks are. It could eventually be used to build extremely sturdy medical and electronic devices.

To make this super strong material, Horacio Espinosa at Northwestern University in Illinois and his colleagues started with particles made from metals like gold and platinum, each about 100 nanometres in size. Some were shaped like solid or hollow cubes with flattened corners, while others formed just the edges of a cube.

The best way to ensure that a material has the properties you want is to assemble it from scratch, one building block at a time. However, these nanoparticles were so tiny that assembling them was a challenge. So, the researchers looked to DNA to act as a kind of glue.

They attached carefully synthesised molecules of DNA to the nanoparticles. Then, when they mixed them, the bits of DNA that naturally were attracted each other bonded chemically, making the nanoparticles stick together and form a material.

The researchers varied the shapes of the nanoparticle to build materials with different properties, which they tested by putting them under pressure. They found that using mesh-like nanoparticles produced the substance with the highest strength and stiffness.

Read the original article on New Scientist.