Quantizing single-molecule surface enhanced Raman Scattering with DNA origami metamolecules

Date 2nd, Oct 2019
Source Phys.org - Scientific News Websites

DESCRIPTION

Tailored metal nanoclusters can be actively developed in the lab to manipulate light at the subwavelength scale for nanophotonic applications. However, their precise molecular arrangement in a hotspot with fixed numbers and positions remain challenging to investigate. Weina Fang and colleagues at the school of chemistry and chemical engineering, Key Lab of Interfacial Physics and Technology, Organic Electronics and Information Displays and the Institute of Intelligent Systems in China and Germany; engineered DNA origami metamolecules with Fano resonances (DMFR) (a type of resonance scattering phenomenon), and published the results in Science Advances. The molecules precisely localized single dye molecules to produce quantified surface-enhanced Raman scattering responses (SERS). To deliver tailored plasmonic combinations, Fang et al. developed a general and programmable method by anchoring a set of large gold nanoparticles (L-AuNPs) on prescribed n-tuple (an ordered list of n elements) docking sites of super-origami DNA frameworks.