Photonic Cluster States Generated at Room Temps for Quantum Computation

Date 18th, Nov 2019
Source Photonics Media - Scientific News Websites

DESCRIPTION

To observe quantum phenomena on a macroscopic scale, researchers at the Center for Macroscopic Quantum States (bigQ) and the Technical University of Denmark (DTU) created an extremely entangled quantum state, called a cluster state. The team’s scalable scheme for the generation of photonic cluster states could be suitable for universal measurement-based quantum computation. The researchers used temporal multiplexing of squeezed light modes, delay loops, and beamsplitter transformations to generate a cylindrical cluster state with a topological structure, as required for universal quantum information processing. The generated state consisted of more than 30,000 entangled light pulses arranged in a 2D cylindrical lattice. The...