Date7th, Jun 2023

Summary:

As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now, in ACS Applied Nano Materials, researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.

Full text:

ADVERTISEMENT

Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas

'Heat highways' could keep electronics cool by Staff Writers Washington DC (SPX) Jun 07, 2023

As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now, in ACS Applied Nano Materials, researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.

Smaller and smarter electronics have revolutionized many aspects of life, from communication to medicine. But shrinking sizes mean that these devices concentrate heat in smaller areas, which can cause lagging computing speeds and even force devices to completely shut down unexpectedly to prevent damage.

To dissipate this heat, researchers are turning to nanocomposite materials that contain a flexible polymer and thermally conductive filler. A simple way to make nanocomposites is by electrospinning, in which a solution of polymer and filler is jetted out of a syringe through an electrically charged nozzle, forming fibers that build up into a thin film. While simple, electrospinning from a single solution, or uniaxial electrospinning, makes it difficult to control the material's properties. So, Jinhong Yu, Sharorong Lu and coworkers used a two-solution technique, called coaxial electrospinning, to better control the fiber design and improve heat dissipation of a new nanocomposite.

The researchers made one solution with their selected polymer, polyvinyl alcohol, and a separate solution with the thermally conductive filler, a nanodiamond material, to produce the new nanocomposite. By fitting a syringe of each solution onto a nozzle that combined the two, the researchers made fibers with a polyvinyl alcohol core and nanodiamond coating, rather than a random distribution of the two components. The researchers say the coated fibers act as a "highway" to direct heat, like traffic, along and across the fibers throughout the film. In tests, the new materials dissipated heat better than those made with the traditional nozzle and were four times as thermally conductive as previously reported nanocomposites. The researchers say that these films could one day be used to keep tiny electronics working hard while staying cool.

The authors acknowledge funding from the Key Laboratory of New Processing Technology for Nonferrous Metal and Materials and the Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices.

Research Report:"Enhanced Thermal Conductivity of Nanodiamond Nanosheets/Polymer Nanofiber Composite Films by Uniaxial and Coaxial Electrospinning: Implications for Thermal Management of Nanodevices"

Related Links American Chemical Society Computer Chip Architecture, Technology and ManufactureNano Technology News From SpaceMart.com

ADVERTISEMENT Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas

RELATED CONTENT

The following news reports may link to other Space Media Network websites.

CHIP TECH Taiwanese chip giant TSMC says industry could have 'stabilising' effect Hsinchu, Taiwan (AFP) June 6, 2023 Taiwanese semiconductor giant TSMC said Tuesday its production of ever-smaller microchips will remain on the island, hopeful that the critical industry will have a "stabilising effect on global geopolitical conflicts". Taiwan Semiconductor Manufacturing Company - whose clients include Apple and Intel - controls more than half the world's output of silicon wafers, used in everything from smartphones to cars and missiles. Recent years have seen it navigating geopolitical tussles between the Unit ... read more

ADVERTISEMENT

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.

Source: