| Date | 25th, Jun 2023 |
|---|
![]()
Nanophotonics: Coupling light and matter by Staff Writers Munich, Germany (SPX) Jun 24, 2023
The interaction of light and matter on the nanoscale is a vital aspect of nanophotonics. Resonant nanosystems allow scientists to control and enhance electromagnetic energy at volumes smaller than the wavelength of the incident light.
As well as allowing sunlight to be captured much more effectively, they also facilitate improved optical wave-guiding and emissions control. The strong coupling of light with electronic excitation in solid-state materials generates hybridized photonic and electronic states, so-called polaritons, which can exhibit interesting properties such as Bose-Einstein condensation and superfluidity.
A new study, published in the journal Nature Materials, presents progress in the coupling of light and matter on the nanoscale. Researchers led by LMU physicist Dr. Andreas Tittl have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
This novel platform is based on photonic bound states in the continuum, so-called BICs, in nanostructured tungsten disulfide (WS2).
The simultaneous utilization of WS2 as the base material for the manufacture of metasurfaces with sharp resonances and as a coupling partner supporting the active material excitation opens up new possibilities for research into polaritonic applications.
An important breakthrough in this research is controlling the coupling strength, which is independent of losses within the material. Because the metasurface platform is able to integrate other TMDCs or excitonic materials without difficulty, it can furnish fundamental insights and practical device concepts for polaritonic applications.
Moreover, the concept of the newly developed metasurface provides a foundation for applications in controllable low-threshold semiconductor lasers, photocatalytic enhancement, and quantum computing.
Research Report:Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces
Related Links Ludwig Maximilian University of Munich Stellar Chemistry, The Universe And All Within It
![]()
![]()
![]()
Multifunctional interface enables manipulation of light waves in free space
Washington DC (SPX) May 25, 2023
Recent technological advances have given us a remarkable ability to manipulate and control light waves, opening up numerous applications in various fields, such as optical communication, sensing, imaging, energy, and quantum computing. At the heart of this progress are photonic structures that can control light waves, either at the chip level in the form of photonic integrated circuits (PICs) or in free space as meta-optics.
Combining these structures allows for the creation of compact optical sys ... read more
The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.
