MLLs can produce coherent ultrashort pulses of light at extremely fast speeds on the order of picoseconds and femtoseconds. These devices have enabled numerous technologies in photonics, including extreme nonlinear optics, two-photon microscopy, and optical computing.

“Our goal is to revolutionize the field of ultrafast photonics by transforming large lab-based systems into chip-sized ones that can be mass produced and field deployed,” said Qiushi Guo, a physics professor at CUNY Graduate Center. “Not only do we want to make things smaller, but we also want to ensure that these ultrafast chip-sized lasers deliver satisfactory performances.”
Through hybrid integration of a semiconductor optical amplifier chip with a novel thin-film lithium niobate nanophotonic circuit, the researchers created an integrated MLL the size of an optical chip. According to the authors, the MLL generates ultrashort ~4.8-ps optical pulses at around 1065 nm with a peak power of ~0.5 W — the highest output pulse energy and peak power of any integrated MLLs in nanophotonic platforms.
“We are not just interested in making mode-locked lasers more compact,” said Alireza Marandi, an assistant professor of electrical engineering and applied physics at CalTech. “We are excited about making a well-performing mode-locked laser on a nanophotonic chip and combining it with other components. That is when we can build a complete ultrafast photonic system in an integrated circuit.”

“This achievement paves the way for eventually using cellphones to diagnose eye diseases or analyzing food and environments for things like E. coli and dangerous viruses,” Guo said. “It could also enable futuristic chip-scale atomic clocks, which allows navigation when GPS is compromised or unavailable.”
The researchers plan to continue improving this technology so it can operate at even shorter timescales and higher peak powers, with a goal of 50 fs, which would be a hundredfold improvement over the current device, which generates pulses 4.8 ps in length.
The research was published in Science (www.doi.org/10.1126/science.adj5438).

