Date19th, Jul 2018

Summary:

Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. This algae species is widely spread in the Russian Far East marine area. The acu...

Full text:

Home > Press > FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly.

These are TEM images of carbon extraction replica of silicon nanotubes SiNTs.

CREDIT
FEFU press office These are TEM images of carbon extraction replica of silicon nanotubes SiNTs. CREDIT FEFU press office

Abstract: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. This algae species is widely spread in the Russian Far East marine area. The acute toxic effect exhibited at concentrations of 100 mg/l of carbon nanotubes (CNTs) and silicon nanotubes (SiNTs) in the sea- or fresh water.

Vladivostok, Russia | Posted on July 18th, 2018

The international team of toxicologists led by scientists of Far Eastern Federal University (FEFU) has researched the environmental adverse effects of carbon nanotubes (CNTs), silicon nanotubes (SiNTs) and carbon nanofibers (CNFs) contained in the plastic materials and composites. Research outcome is published in the Environmental Research magazine.

The reason why researchers paid attention to the problem of the toxic effects of nanoparticles is the rapid growth of their applying in the different fields of the world manufacturing. It's estimated that to 2020 the world market of CNTs will reach 5,64 billion USD, i.e. it will more than doubled compared to 2000 when it was 2, 26 billion USD.

During the plastic and composites fabrication CNTs and SiNTs added in their structure to improve physical properties of the final materials. In the modern medicine nanotubes of different nature are proposed as the drugs adsorbents and drug delivery systems.

At the present time, all kinds of synthesized carbon-based nanoparticles are well described concerning their physical parameters. Nevertheless, scientists declare lack of toxicity data necessary for risk appraisal and modeling.

"From 60 to 80 percent of the world plastic materials and composites and about 10 percent of their annual production end up into the World Ocean where degradation of such materials takes several hundred years. As a rule, all these materials contain nanoparticles added for their physical properties improvement," comments on one of the article's authors Kirill Golokhavast, M.D., Ph.D., FEFU provost for science. "Marine microalgae toxicology research is of a big importance because they are widespread and constitute the basis of the food chain in the ocean."

For the nanotoxicology research purposes, scientists chose the unicellular marine microalgae Heterosigma akashiwo isolated from Peter the Great Gulf of Japan Sea. This choice was made due to the fact that this type of algae is typical for the Russian Far East and its research could be relevant for all microalgae of the local marine basin. The other important reason is that H. akashiwo has a thin cell wall that could render it rather susceptible for the chemical pollution.

The experiment performed in accordance to the guidance OECD No.201 (OECD, 2006) with minor modifications. For the criteria of nanotubes toxic effect scientist took the statistically significant reduction of the number of algal cells in experimental sample compared to control one. The toxicity tests were performed in 24-well cell culture plates.

Carbon nanotubes and nanofibers used in this research were synthesized in the Boreskov Institute of Catalysis (Novosibirsk, Russia) and their toxic effects were previously studied on rats.

Silicon nanotubes SiNTs and SiNTs INC-2 were kindly provided by the Department of Chemistry, Inha University Republic of Korea.

The research methodology is based on Raman spectroscopy to characterize samples of CNTs and confocal microscopy by optical microscope Axio Imager A2 (Carl Zeiss, Germany) with a magnification of 200 ' and 600 ' to image microalgae.

Algal cell analysis and counting of the propidium iodide stained cells were conducted by CytoFLEX flow cytometer (Beckman Coulter, USA) with the excitation light of 405 nm, 488 nm, and 638 nm.

Conducting the research, scientists concluded that CNTs and SiNTs toxic effect emerged when nanotubes concentration is 100 mg/l of water. The acute toxic effect revealed on the third day of the experiment and chronic intoxication took place on the seventh day. Herewith, SiNTs is much more toxic than CNTs due to the less size and hydrophilic properties of SiNTs nanotubes.

Scientists assumed that the main reason that caused the algal cells' death during the experiment is mechanical damage to cells integrity by nanoparticles. Compared to nanotubes carbon nanofibers didn't inhibit algal cells growth and didn't reveal toxicity at concentration 100 mg/l of water but influenced on the cells' shape distortion. The reason of these deformations, according to scientists, was Nickel (Ni) impurities contained in CNFs.

"The volume of nanomaterials presence in our life has increased enormously from early laboratory samples delivered in microgram quantities. Up to date, it's multi-ton production of plastic and composites contained nanoparticulate matter such as carbon and silicon nanotubes. The further the more important to know what environment burden may be caused by this particles. We already know that nanotube diameter is crucial to their toxicity. The thinner the significantly more toxic they are. Silicon nanotubes is more toxic than carbon, but carbon-based compounds could cause a series of neurodegenerative disorders, mainly due to oxidative stress accumulation and a parallel reduction in antioxidant protection mechanisms", comments on Aristidis Tsatsakis, article co-main author, D.Sc, PhD, the Director of the Department of Toxicology and Forensic Sciences of the Medical School at the University of Crete and the University Hospital of Heraklion.

###

Work was supported by Grant of the President of the Russian Federation (MD-7737.2016.5); AK acknowledges support by Estonian Research Agency's grant IUT 23-5 https://doi.org/10.1016/j.envres.2018.06.005 Far Eastern Federal University, Vladivostok, Russian Federation. Boreskov Institute of Catalysis, Novosibirsk, Russian Federation. A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia. Inha University, Incheon, Republic of Korea. National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia. Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece. Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation. for press:

####

For more information, please click here

Contacts:Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

RELATED JOURNAL ARTICLE:

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Environment

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Safety-Nanoparticles/Risk management

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nylon cooking bags, plastic-lined cups can release nanoparticles into liquids April 22nd, 2022

Good for groundwater ' bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New chip ramps up AI computing efficiency August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

Research partnerships

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022