Date28th, Jul 2018

Summary:

Molecular electronics is a wonderful and exciting concept: imagine the ave-inspiring power of chemical synthesis combined with nanoelectronic circuits, the backbone of the information society!!!! Mole...

Full text:

Home > Press > A molecular switch at the edge of graphene

Abstract: Molecular electronics is a wonderful and exciting concept: imagine the ave-inspiring power of chemical synthesis combined with nanoelectronic circuits, the backbone of the information society!!!! Molecules that switch devices, or even *are* the devices. Unfortunately, molecules are very, very small and difficult (to say the least) to trap and control even with the finest nanolithography in existence. Methods to create molecular electronics exist, but are challenging. The hardest problem is to control how the molecules bind to the electrodes, because in nanotechnology, the details of the contacts have a massive impact on how a device works.

Kgs. Lyngby, Denmark | Posted on July 27th, 2018

A team of italian, spanish and danish researchers have worked out a far simpler way to put molecules to work in electronic switches.

Jose Caridad, assistant professor at DTU Nanotech, recently discovered that edges of graphene - which are just 0.3 nm thick and a thousand times sharper than a razor blade - give water molecules a well-defined place to bind, while somehow allowing them to switch orientation (see illustration below) in response to an electrical field. These relatively few molecules (maybe about 10000) attached along the edge, control the resistance and capacitance of surprisingly large graphene devices (5 x 5 'm device is about 1 billion carbon atoms). The graphene devices were encapsulated - leaving just the edges exposed and accessible to the molecules.

The water molecules at the edge can be switched "up" or "down" with a gate electrode, similar to those used for MOSFETs in computer chips. The molecules respond collectively to the external electric field. Not only that, they keep their alignment after the field has been removed, just like a toggle switch stay in position after flipped it. Not only that (!), they communicate with the charge carriers in the graphene, which the researchers saw as a persistent shift in the conductance and capacitance. The switching strength depend on how polar the molecules are, making water the best he tried so far.

Jos' Caridad now wants to use this for sensors and memory devices, which are important for future internet of things and neuromorphic computing.

Peter B'ggild, Prof. at DTU Nanotech, is excited: "The key thing is to control which atoms terminate the graphene edge, even before the water molecules arrive. If they are fluorine, nothing happens. If we replace them with oxygen, it comes to live. We can basically dial in a wide range of responses depending on which atom we put on the carbon atoms."

The experiments were backed up by theoretical calculations led by my colleague Prof. Mads Brandbyge, who worked with molecular electronics for many years: "We tried with polar molecules, and immediately we have a memory device. What about larger molecules, with special electronic properties? Can they switch orientation as well? The graphene edge is a perfect molecule trap, and there are so many interesting possibilities."

The work was done in collaboration with our great colleagues from Politecnico Milano, Universidade Do Minho and Universit' di Catania, and you can read more here: "A Graphene-Edge Ferroelectric Molecular Switch" in Nano Letters.

####

For more information, please click here

Contacts:Peter B'ggildAddress: DTU Nanotech, Technical University of Denmark, Building 345CCity: Kgs. LyngbyState: Zip: 2800Country: DenmarkPhone: 21362798

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Molecular Nanotechnology

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Chip Technology

New chip ramps up AI computing efficiency August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Memory Technology

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Quantum network nodes with warm atoms June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Sensors

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

'Life-like' lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to '5 Orders of Magnitude' Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With 'Virtually No Power Consumption' When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Nanoelectronics

Atomic level deposition to extend Moore's law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Research partnerships

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022