Date13th, Sep 2018

Summary:

Epidemiological studies have established a strong correlation between inhaling ultrafine particles from incomplete combustion and respiratory and cardiovascular diseases. Still, relatively little is k...

Full text:

Home > Press > Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung.

Dispersion behavior and agglomeration state of carbon nanodots and LSM images of co-cultures exposed to nanodots.

CREDIT
Estelle Durantie and Hana Barosova Dispersion behavior and agglomeration state of carbon nanodots and LSM images of co-cultures exposed to nanodots. CREDIT Estelle Durantie and Hana Barosova

Abstract: Epidemiological studies have established a strong correlation between inhaling ultrafine particles from incomplete combustion and respiratory and cardiovascular diseases. Still, relatively little is known about the mechanisms behind how air particulates affect human health. New work with carbon nanodots seeks to provide the first model of how ultrafine carbon-based particles interact with the lung tissues.

Washington, DC | Posted on September 12th, 2018

An international group of researchers created a 3D lung cell model system to investigate how carbon-based combustion byproducts behave as they interact with human epithelial tissue. In Biointerphases, an AVS journal from AIP Publishing, the investigators discovered that the surface properties of the carbon nanodot's properties and aggregation patterns affected their distribution in a lab-grown copy of the lung's barrier layer, the epithelium. The carbon nanodots served as representatives for air pollution particles.

"Localization and quantification of inhaled carbon nanoparticles at the cellular level has been very difficult," said Barbara Rothen-Rutishauser, an author on the paper, which is part of a special focus issue of the journal Biointerphases on Women in Biointerface Science. "We now have a model fluorescent particle that can try to answer questions about the fate of ultrafine particles in the lung."

At less than 100 nanometers in diameter, ultrafine particles have the small size and large relative surface area to wreak havoc on cells and potentially enter the bloodstream. Other groups' research has shown that ultrafine particles induce adverse effects on the lungs and cardiovascular system by increasing oxidative stress in the body.

Because of particle size, it is difficult for lab techniques to distinguish between carbon in pollutants from carbon in tissues. Therefore, little is known about surface charge and states of agglomeration, two key physical and chemical features that affect how carbon particles interact with living tissues.

To begin modeling ultrafine particles, Estelle Durantie, another author of the study, turned to fluorescent carbon nanodots doped with nitrogen and a combination of nitrogen and sulfur with different sizes and charges. The team then applied these nanodots to the top layer of a lab-grown epithelial tissue, where gas exchange typically happens in the lung.

Since regular fluorescent microscopes lack the resolution to visualize such small particles, the group used spectroscopy and UV light to detect and quantify nanodots as they migrated from the luminal compartment past their lung model's immune cells. As the researchers expected, charged particles tended to stick together before penetrating the gas-exchange barrier. While most of the neutrally charged nanodots passed through the tissue after only an hour, only 20 percent of the agglomerated charged particles infiltrated the epithelium.

Rothen-Rutishauser said she hopes to further improve nanodots so that they better mimic ultrafine particles. "What we're seeing is that translocation depends on aggregation state," Rothen-Rutishauser said. "We hope to continue trying out different sizes of nanodots, including other types of particles that get us closer to the real environment."

####

About American Institute of PhysicsThe AVS journal Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays.

For more information, please click here

Contacts:Rhys Leahy

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

The article, "Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier," is authored by Estelle Durantie, Hana Barosova, Barbara Drasler, Laura Rodriguez-Lorenzo, Dominic Urban, Dimitri Vanhecke, Dedy Septiadi, Liliane Ackermann-Hirschi, Alke Petri-Fink, and Barbara Rothen-Rutishauser. The article appears in Biointerphases Sept. 11, 2018 (DOI: 10.1116/1.5043373) and can be accessed at:

Imaging

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Nanomedicine

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Tools

Atomic level deposition to extend Moore's law and beyond July 15th, 2022

Nano-rust: Smart additive for autonomous temperature control: FAU researchers develop a new, versatile method for temperature monitoring in materials July 8th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Snapshot measurement of single nanostructure's circular dichroism March 25th, 2022

Environment

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Safety-Nanoparticles/Risk management

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nylon cooking bags, plastic-lined cups can release nanoparticles into liquids April 22nd, 2022

Good for groundwater ' bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020