Date6th, Oct 2018

Summary:

Rice University nanoscientists have demonstrated a new catalyst that can convert ammonia into hydrogen fuel at ambient pressure using only light energy, mainly due to a plasmonic effect that makes the...

Full text:

Home > Press > Light makes Rice U. catalyst more effective: Halas lab details plasmonic effect that allows catalyst to work at lower energy

Scientists with Rice's Laboratory for Nanophotonics have shown how a light-driven plasmonic effect allows catalysts of copper and ruthenium to more efficiently break apart ammonia molecules, which each contain one nitrogen and three hydrogen atoms. When the catalyst is exposed to light (right), resonant plasmonic effects produce high-energy Scientists with Rice's Laboratory for Nanophotonics have shown how a light-driven plasmonic effect allows catalysts of copper and ruthenium to more efficiently break apart ammonia molecules, which each contain one nitrogen and three hydrogen atoms. When the catalyst is exposed to light (right), resonant plasmonic effects produce high-energy "hot carrier" electrons that become localized at ruthenium reaction sites and speed up desorption of nitrogen compared with reactions conducted in the dark with heat (left). (Photo by LANP/Rice University)

Abstract: Rice University nanoscientists have demonstrated a new catalyst that can convert ammonia into hydrogen fuel at ambient pressure using only light energy, mainly due to a plasmonic effect that makes the catalyst more efficient.

Houston, TX | Posted on October 5th, 2018

A study from Rice's Laboratory for Nanophotonics (LANP) in this week's issue of Science describes the new catalytic nanoparticles, which are made mostly of copper with trace amounts of ruthenium metal. Tests showed the catalyst benefited from a light-induced electronic process that significantly lowered the "activation barrier," or minimum energy needed, for the ruthenium to break apart ammonia molecules.

The research comes as governments and industry are investing billions of dollars to develop infrastructure and markets for carbon-free liquid ammonia fuel that will not contribute to greenhouse warming. But the researchers say the plasmonic effect could have implications beyond the "ammonia economy."

"A generalized approach for reducing catalytic activation barriers has implications for many sectors of the economy because catalysts are used in the manufacture of most commercially produced chemicals," said LANP Director Naomi Halas, a chemist and engineer who's spent more than 25 years pioneering the use of light-activated nanomaterials. "If other catalytic metals can be substituted for ruthenium in our synthesis, these plasmonic benefits could be applied to other chemical conversions, making them both more sustainable and less expensive."

Catalysts are materials that speed up chemical reactions without reacting themselves. An everyday example is the catalytic converter that reduces harmful emissions from a vehicle's exhaust. Chemical producers spend billions of dollars on catalysts each year, but most industrial catalysts work best at high temperature and high pressure. The decomposition of ammonia is a good example. Each molecule of ammonia contains one nitrogen and three hydrogen atoms. Ruthenium catalysts are widely used to break apart ammonia and produce hydrogen gas (H2), a fuel whose only byproduct is water, and nitrogen gas (N2), which makes up about 78 percent of Earth's atmosphere.

The process begins with the ammonia sticking, or adsorbing, to the ruthenium, and proceeds through a series of steps as the bonds in ammonia are broken one by one. The hydrogen and nitrogen atoms left behind grab a partner then leave, or desorb, from the ruthenium surface. This final step turns out to be the most critical, because the nitrogen has a strong affinity for the ruthenium and likes to stick around, which blocks the surface from attracting other ammonia molecules. To drive it away, more energy must be added to the system.

Graduate student Linan Zhou, the lead author of the Science study, said the efficiency of LANP's copper-ruthenium catalyst derives from a light-induced electronic process that produces localized energy at ruthenium reaction sites, which aids desorption.

The process, known as "hot carrier-driven photocatalysis," has its origins in the sea of electrons that constantly swirl through the copper nanoparticles. Some wavelengths of incoming light resonate with the sea of electrons and set up rhythmic oscillations called localized surface plasmon resonances. LANP has pioneered a growing list of technologies that make use of plasmonic resonances for applications as diverse as color-changing glass, molecular sensing, cancer diagnosis and treatment and solar energy collection.

In 2011, LANP's Peter Nordlander, one of the world's leading theoretical experts on nanoparticle plasmonics, Halas and colleagues showed that plasmons could be used to boost the amount of short-lived, high-energy electrons called "hot carriers" that are created when light strikes metal. In 2016, a LANP team that included Dayne Swearer, who's also a co-author of this week's study, showed that plasmonic nanoparticles could be married with catalysts in an "antenna-reactor" design where the plasmonic nanoparticle acted as antenna to capture light energy and transfer it to a nearby catalytic reactor via a near-field optical effect.

"That was the first generation," Zhou said of the antenna-reactor. "And the main catalytic effect came from the near-field induced by the antenna when it absorbs light. This near-field drives oscillations in the adjacent reactor, which then generate hot carriers. But if we can have hot carriers that can directly reach the reactor and drive the reaction, it would be much more efficient."

Zhou, a chemist, spent months refining the synthesis of the copper-ruthenium nanoparticles, which are much smaller than a red blood cell. Each nanoparticle contains tens of thousands of copper atoms but just a few thousand ruthenium atoms, which take the place of some copper atoms on the particle's surface.

"Basically, there are ruthenium atoms scattered in a sea of copper atoms, and it's the copper atoms that are absorbing the light, and their electrons are shaking back and forth collectively," Swearer said. "Once a few of those electrons gain enough energy through a quantum process called nonradiative plasmon decay, they can localize themselves within the ruthenium sites and enhance catalytic reactions.

"Room temperature is about 300 Kelvin and plasmon resonances can raise the energy of these hot electrons up to 10,000 Kelvin, so when they localize on the ruthenium, that energy can be used to break the bonds in molecules, assist in adsorption and more importantly in desorption," Swearer said.

Just as a metal picnic table heats up on a sunny afternoon, the white laser light -- a stand-in for sunlight in Zhou's experiments -- also caused the copper-ruthenium catalyst to heat. Because there is no way to directly measure how many hot carriers were created in the particles, Zhou used a heat-sensing camera and spent months taking painstaking measurements to tease apart the thermal-induced catalytic effects from those induced by hot carriers.

"About 20 percent of the light energy was captured for ammonia decomposition," Zhou said. "This is good, and we think we can refine to improve this and make more efficient catalysts."

Zhou and Halas said the team is already working on follow-up experiments to see if other catalytic metals can be substituted for ruthenium, and the initial results are promising.

"Now that we have insight about the specific role of hot carriers in plasmon-mediated photochemistry, it sets the stage for designing energy-efficient plasmonic photocatalysts for specific applications," Halas said.

Additional co-authors include Chao Zhang, Hossein Robatjazi, Hangqi Zhao, Luke Henderson and Liangliang Dong, all of Rice; Phillip Christopher of the University of California, Santa Barbara; and Emily Carter of Princeton University.

Halas is Rice's Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering. Nordlander is the Wiess Chair and Professor of Physics and Astronomy, and professor of electrical and computer engineering, and materials science and nanoengineering.

This research was funded by the Air Force Office of Scientific Research, the Welch Foundation and the National Science Foundation.

The DOI of the Science paper is: 10.1126/science.aat6967

####

About Rice UniversityLocated on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read 'What they're saying about Rice,' go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:David Ruth713-348-6327

Jade Boyd713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Chemistry

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water's edge: Self-assembling 2D materials at a liquid'liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

Plasmonics

Preserving the goods: A new technique for isolating intact lysosomes from cell cultures: Scientists advance the study of fragile digestive organelles by developing strategy to rapidly extract them from cells using magnetic nanoparticles January 7th, 2022

A new dimension in magnetism and superconductivity launched November 5th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials' electrical and optical properties with plasmon engineering August 13th, 2021

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Govt.-Legislation/Regulation/Funding/Policy

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Military

New chip ramps up AI computing efficiency August 19th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Energy

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Generating power where seawater and river water meet July 22nd, 2022

At the water's edge: Self-assembling 2D materials at a liquid'liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New chip ramps up AI computing efficiency August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

Photonics/Optics/Lasers

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

'Life-like' lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

Electrically driven single microwire-based single-mode microlaser July 8th, 2022

Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery July 8th, 2022