Date1st, Nov 2018

Summary:

Two-dimensional magnetism has long intrigued and motivated researchers for its potential to unleash new states of matter and utility in nano-devices.

Full text:

Home > Press > 2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields

Abstract: Two-dimensional magnetism has long intrigued and motivated researchers for its potential to unleash new states of matter and utility in nano-devices.

Chestnut Hill, MA | Posted on October 31st, 2018

In part the excitement is driven by predictions that the magnetic moments of electrons - known as "spins" - would no longer be able to align in perfectly clean systems. This enhancement in the strengths of the excitations could unleash numerous new states of mater, and enable novel forms of quantum computing.

A key challenge has been the successful fabrication of perfectly clean systems and their incorporation with other materials. However, for more than a decade, materials known as "van der Waals" crystals, held together by friction, have been used to isolate single-atom-thick layers leading to numerous new physical effects and applications.

Recently this class has been expanded to include magnetic materials, and it may offer one of the most ambitious platforms yet in scientific efforts to investigate and manipulate phases of matter at the nanoscale, researchers from Boston College, the University of Tennessee, and Seoul National University, write in the latest edition of the journal Nature.

Two-dimensional magnetism, the subject of theoretical explorations and experimentation for the past 80 years, is enjoying a resurgence thanks to a group of materials and compounds that are relatively plentiful and easy to manipulate, according to Boston College Associate Professor of Physics Kenneth Burch, a first author of the article "'Magnetism in two-dimensional van der Waals materials."

The most oft-cited example of these materials is graphene, a crystal constructed in uniform, atom-thick layers. A procedure as simple as applying a piece of scotch tape to the crystal can remove a single layer, providing a thin, uniform section to serve as a platform to create novel materials with a range of physical properties open to manipulation.

"What's amazing about these 2-D materials is they're so flexible," said Burch. "Because they are so flexible, they give you this huge array of possibilities. You can make combinations you could not dream of before. You can just try them. You don't have to spend this huge amount of time and money and machinery trying to grow them. A student working with tape puts them together. That adds up to this exciting opportunity people dreamed of for a long time, to be able to engineer these new phases of matter."

At that single layer, researchers have focused on spin, what Burch refers to as the "magnetic moment" of an electron. While the charge of an electron can be used to send two signals - either "off" or "on", results represented as either zero or one - spin excitations offer multiple points of control and measurement, an exponential expansion of the potential to signal, store or transmit information in the tiniest of spaces.

"One of the big efforts now is to try to switch the way we do computations," said Burch. "Now we record whether the charge of the electron is there or it isn't. Since every electron has a magnetic moment, you can potentially store information using the relative directions of those moments, which is more like a compass with multiple points. You don't just get a one and a zero, you get all the values in between."

Potential applications lie in the areas of new "quantum" computers, sensing technologies, semiconductors, or high-temperature superconductors.

"The point of our perspective is that there has been a huge emphasis on devices and trying to pursue these 2-D materials to make these new devices, which is extremely promising," said Burch. "But what we point out is magnetic 2D atomic crystals can also realize the dream of engineering these new phases - superconducting, or magnetic or topological phases of matter, that is really the most exciting part. It is not just fundamentally interesting to realize these theorems that have been around for 40 years. These new phases would have applications in various forms of computing, whether in spintronics, producing high temperature superconductors, magnetic and optical sensors and in topological quantum computing."

Burch and his colleagues - the University of Tennessee's David Mandrus and Seoul National University's Je-Geun Park - outline four major directions for research into magnetic van der Waals materials:

Discovering new materials with specific functionality. New materials with isotropic or complex magnetic interactions, could play significant roles in the development of new supercondcutors.These new materials can also lead to a deeper understanding of fundamental issues in condensed matter physics, serving as unique platforms for experimentation.The materials will be tested for the potential to become unique devices, capable of delivering novel applications. The two-dimensional structure of these materials makes them more receptive to external signals.These materials possess quantum and topological phases that could potentially lead to exotic states, such as quantum spin liquids, "skyrmions," or new iterations of superconductivity.Germano Iannacchione, a National Science Foundation (NSF) program officer who oversees grants to Burch and other materials scientists, said the co-authors offer the broader community of scientists ideas that can serve to guide a dynamic field pushing beyond boundaries in materials research.

"Magnetism in 2D van Der Waals materials has grown into a vibrant field of study," said Iannacchione. "Its investigators have matured from highly focused researchers to statesmen shepherding a field, broadening applications into as many channels as possible. The review captures the multiplicative aspect of steady, focused, and sometimes risky research that opens vast new frontiers, with tremendous potential for applications in quantum computing and spintronics."

####

For more information, please click here

Contacts:Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors � Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Superconductivity

U-M researchers untangle the physics of high-temperature superconductors August 19th, 2022

2 Dimensional Materials

Buckyballs on gold are less exotic than graphene July 22nd, 2022

At the water�s edge: Self-assembling 2D materials at a liquid�liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Solving the puzzle of 2D disorder: An interdisciplinary team developed a new method to characterize disorder in 2D materials June 17th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

Physics

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022

Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022

Wireless/telecommunications/RF/Antennas/Microwaves

Quantum network nodes with warm atoms June 24th, 2022

Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022

Quantum communication

Quantum network nodes with warm atoms June 24th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Magnetism/Magnons

�Nanomagnetic� computing can provide low-energy AI, researchers show May 6th, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Skyrmions

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace: Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have c April 2nd, 2021

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Discovery may lead to new materials for next-generation data storage: Army-funded research demonstrates emergent chirality in polar skyrmions for the first time in oxide superlattices May 10th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Spintronics

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Magnet-free chiral nanowires for spintronic devices March 18th, 2022

Chip Technology

New chip ramps up AI computing efficiency August 19th, 2022

Engineers fabricate a chip-free, wireless electronic �skin�: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Nanoelectronics

Atomic level deposition to extend Moore�s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Research partnerships

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Quantum nanoscience

Scientists capture a �quantum tug� between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022