Date8th, Nov 2018

Summary:

Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and...

Full text:

Home > Press > WSU researchers develop new technique to understand biology at the nanoscale

Prashanta Dutta, professor in the School of Mechanical and Materials Engineering

 

Prashanta Dutta, professor in the School of Mechanical and Materials Engineering

Abstract: Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and plants and are critically important to many biological functions.

WSU researchers develop new technique to understand biology at the nanoscale

Pullman, WA | Posted on November 7th, 2018

The new technique could make it easier and less expensive for researchers to gain important information about many biological processes, from understanding the spread of infection in people to improving drug delivery techniques.

Led by graduate student Adnan Morshed and Prashanta Dutta, professor in the School of Mechanical and Materials Engineering ( https://mme.wsu.edu ), the work was published in Physical Review Fluids ( https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.103702 ) and funded by the National Institute of General Medical Sciences of the National Institutes of Health.

At the basis of much of biology are cells and, at even smaller scales, cell-like bubbles that float around in liquid doing critically important jobs. So, for instance, neurons communicate in our brain through vesicles that carry information and chemicals from one neuron to the next. The HIV virus is another tiny vesicle. Over time, the vesicle carrying HIV changes and becomes stiffer, which indicates that the virus is becoming more infectious.

But studying the properties of these tiny and critically important cellular sacs that travel through organisms in fluids has been difficult, especially when researchers get to the smallest floaters that are 40-100 nanometers in size. To study biological processes at tiny scales, the researchers use atomic force microscopes, which require removing the vesicles from their natural floating homes. The process is expensive, cumbersome and slow. Furthermore, by taking them out of their natural settings, the biological materials also don't necessarily exhibit their natural behavior, said Dutta.

https://youtu.be/p8-lXc8yRaY

The WSU research team has developed a system that uses a microfluidic-based system and electric fields to better understand vesicles. Similar to a grocery store checker who identifies products as they are passed over a scanner, the researchers apply electrical fields in a liquid as the vesicle passes through a narrow pore. Because of the electric field, the vesicle moves, deforms or reacts differently depending on its chemical make-up. In the case of the HIV vesicles, for instance, the researchers should be able to see the electric field affect the stiffer, more infectious vesicle in a different way than a more flexible, less infectious vesicle. For drug delivery, the system could differentiate a vesicle that contains more or less of a drug ' even if the two cells might look identical under a microscope.

'Our system is low-cost and high throughput,' said Dutta. 'We can really scan hundreds of samples at a time.'

He added that they can change the speed of the process to allow researchers to more carefully observe property changes.

The researchers developed a model and tested it with synthetic liposomes, tiny sacs that are used for targeted drug delivery. They hope to begin testing the process soon with more realistic biological materials.

See WSU News, https://news.wsu.edu/2018/11/06/new-technique-developed-understand-nanoscale-biology

####

For more information, please click here

Contacts:Prashanta Dutta, professor, School of Mechanical and Materials Engineering, 509-335-7989,

Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509-335-5095,

Copyright © Washington State Universit

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Imaging

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Microfluidics/Nanofluidics

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Stretching diamond for next-generation microelectronics January 5th, 2021

Cancer

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

New nano-gel to protect children receiving chemotherapy from hearing loss June 17th, 2022

Videos/Movies

Scientists prepare for the world's smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Synthetic Biology

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos February 8th, 2021

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you: Berkeley Lab scientists develop a tool that could drastically speed up the ability to design new biological systems September 25th, 2020

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Nanomedicine

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Nanobiotechnology

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022