Nov 09, 2018
(Nanowerk News) A team of researchers from AMOLF, Western University (Canada), and the University of Texas (USA) recently demonstrated the use of algorithmic design to create a new type of nanophotonic structure. This is good news for researchers in optical quantum computing and photovoltaics, because the structure is able to greatly improve the directivity of nanoscale emitters (in light emitting diodes, or single photon sources) and absorbers (in solar cells or photodetectors).
The researchers publish their findings online in Nature Communications ("Broadband highly directive 3D nanophotonic lenses").
Nanophotonic lens optimization and structure. (a) Progression of the evolutionary algorithm at four example generations, with cross-sections of the lens structure and the corresponding directivity, D, values shown. The full 3D structure of the final nanolens design is rendered in (b), with a scanning electron microscope image of the actual experimental lenses shown in (c). (click on image to enlarge)
Directivity describes the ratio of light emission in one particular direction, to the total over all other directions. It is often useful for emitters to have high directivity so that all of the photons created by a nanoscale source can be collected elsewhere. This is particularly valuable in optical quantum computing applications where the collection from single photon emitters proves challenging.
Furthermore, improving directivity is beneficial for nanoscale photovoltaic devices as well; coupling the active absorber material in solar cells exclusively with the sun can improve the photovoltage significantly. This can be understood through an analogy; when heating a material with sunlight, it will get warmer when it is only exchanging energy with the sun, and not with the relatively colder surrounding environment.
Nanophotonic lens optimization and structure. (a) Progression of the evolutionary algorithm at four example generations, with cross-sections of the lens structure and the corresponding directivity, D, values shown. The full 3D structure of the final nanolens design is rendered in (b), with a scanning electron microscope image of the actual experimental lenses shown in (c). (click on image to enlarge)
Directivity describes the ratio of light emission in one particular direction, to the total over all other directions. It is often useful for emitters to have high directivity so that all of the photons created by a nanoscale source can be collected elsewhere. This is particularly valuable in optical quantum computing applications where the collection from single photon emitters proves challenging.
Furthermore, improving directivity is beneficial for nanoscale photovoltaic devices as well; coupling the active absorber material in solar cells exclusively with the sun can improve the photovoltage significantly. This can be understood through an analogy; when heating a material with sunlight, it will get warmer when it is only exchanging energy with the sun, and not with the relatively colder surrounding environment.
