Date17th, Nov 2018

Summary:

Scientists at the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory--have used ultrabright x-ray...

Full text:

Home > Press > Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution

NSLS-II scientist Tiffany Victor is shown at the Hard X-ray Nanoprobe, where her team produced 3D chemical maps of single bacteria with nanoscale resolution.

CREDIT
Brookhaven National Laboratory NSLS-II scientist Tiffany Victor is shown at the Hard X-ray Nanoprobe, where her team produced 3D chemical maps of single bacteria with nanoscale resolution. CREDIT Brookhaven National Laboratory

Abstract: Scientists at the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory--have used ultrabright x-rays to image single bacteria with higher spatial resolution than ever before. Their work, published in Scientific Reports, demonstrates an x-ray imaging technique, called x-ray fluorescence microscopy (XRF), as an effective approach to produce 3-D images of small biological samples.

Upton, NY | Posted on November 16th, 2018

"For the very first time, we used nanoscale XRF to image bacteria down to the resolution of a cell membrane," said Lisa Miller, a scientist at NSLS-II and a co-author of the paper. "Imaging cells at the level of the membrane is critical for understanding the cell's role in various diseases and developing advanced medical treatments."

The record-breaking resolution of the x-ray images was made possible by the advanced capabilities of the Hard X-ray Nanoprobe (HXN) beamline, an experimental station at NSLS-II with novel nanofocusing optics and exceptional stability.

"HXN is the first XRF beamline to generate a 3-D image with this kind of resolution," Miller said.

While other imaging techniques, such as electron microscopy, can image the structure of a cell membrane with very high resolution, these techniques are unable to provide chemical information on the cell. At HXN, the researchers could produce 3-D chemical maps of their samples, identifying where trace elements are found throughout the cell.

"At HXN, we take an image of a sample at one angle, rotate the sample to the next angle, take another image, and so on," said Tiffany Victor, lead author of the study and a scientist at NSLS-II. "Each image shows the chemical profile of the sample at that orientation. Then, we can merge those profiles together to create a 3-D image."

Miller added, "Obtaining an XRF 3-D image is like comparing a regular x-ray you can get at the doctor's office to a CT scan."

The images produced by HXN revealed that two trace elements, calcium and zinc, had unique spatial distributions in the bacterial cell.

"We believe the zinc is associated with the ribosomes in the bacteria," Victor said. "Bacteria don't have a lot of cellular organelles, unlike a eukaryotic (complex) cell that has mitochondria, a nucleus, and many other organelles. So, it's not the most exciting sample to image, but it's a nice model system that demonstrates the imaging technique superbly."

Yong Chu, who is the lead beamline scientist at HXN, says the imaging technique is also applicable to many other areas of research.

"This 3-D chemical imaging or fluorescence nanotomography technique is gaining popularity in other scientific fields," Chu said. "For example, we can visualize how the internal structure of a battery is transforming while it is being charged and discharged."

In addition to breaking the technical barriers on x-ray imaging resolution with this technique, the researchers developed a new method for imaging the bacteria at room temperature during the x-ray measurements.

"Ideally, XRF imaging should be performed on frozen biological samples that are cryo-preserved to prevent radiation damage and to obtain a more physiologically relevant understanding of cellular processes," Victor said. "Because of the space constraints in HXN's sample chamber, we weren't able to study the sample using a cryostage. Instead, we embedded the cells in small sodium chloride crystals and imaged the cells at room temperature. The sodium chloride crystals maintained the rod-like shape of the cells, and they made the cells easier to locate, reducing the run time of our experiments."

The researchers say that demonstrating the efficacy of the x-ray imaging technique, as well as the sample preparation method, was the first step in a larger project to image trace elements in other biological cells at the nanoscale. The team is particularly interested in copper's role in neuron death in Alzheimer's disease.

"Trace elements like iron, copper, and zinc are nutritionally essential, but they can also play a role in disease," Miller said. "We're seeking to understand the subcellular location and function of metal-containing proteins in the disease process to help develop effective therapies."

###

The work was supported by DOE's Office of Science, the National Institutes of Health, and the National Science Foundation.

####

About Brookhaven National LaboratoryBrookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

For more information, please click here

Contacts:Stephanie Kossman

631-344-8671

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

RELATED JOURNAL ARTICLE:

Imaging

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Laboratories

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Nanomedicine

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Tools

Atomic level deposition to extend Moore's law and beyond July 15th, 2022

Nano-rust: Smart additive for autonomous temperature control: FAU researchers develop a new, versatile method for temperature monitoring in materials July 8th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Snapshot measurement of single nanostructure's circular dichroism March 25th, 2022

Nanobiotechnology

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022