Date17th, Dec 2018

Summary:

Vinorelbine Bitartrate (VRL), a semi-synthetic vinca alkaloid was approved by the FDA for breast cancer treatment, as it has been proven to be beneficial for first line of defense and subsequent thera...

Full text:

Home > Press > Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018

Vitamin E TPGS Emulsified Vinorelbine Bitartrate Loaded Solid Lipid Nanoparticles (SLN): Formulation Development, Optimization and In vitro Characterization

CREDIT
Dr. Sanjay Singh, Bentham Science Publishers Vitamin E TPGS Emulsified Vinorelbine Bitartrate Loaded Solid Lipid Nanoparticles (SLN): Formulation Development, Optimization and In vitro Characterization CREDIT Dr. Sanjay Singh, Bentham Science Publishers

Abstract: Vinorelbine Bitartrate (VRL), a semi-synthetic vinca alkaloid was approved by the FDA for breast cancer treatment, as it has been proven to be beneficial for first line of defense and subsequent therapies. But its hydrophilic and thermolabile structure causes hindrance to oral clinical translation. The main objective of this research is the development and optimization of a solid lipid nanoparticle (SLN) structure that can encapsulate hydrophilic and thermolabile Vinorelbine bitartrate to maximize the anticancer activity of the drug without compromising its efficacy and integrity. For this purpose, the study is mainly focused on the application of DOE, a modern statistical optimization tool for nanoparticle modification.

Sharjah, U.A.E. | Posted on December 14th, 2018

To prepare SLNs, a solvent diffusion technique was used employing Taguchi orthogonal array design with process variables and optimized formulation. Glyceryl mono-oleate (GMO) were used for its emulsifying nature and low melting point to enhance entrapment and reducing temperature associated degradation. To prevent infection, two types of surfactants, Vitamin E TPGS, and Poloxamer-188 were used to obtain TPGS-VRL-SLNs and PL-VRL-SLNs.

The results proved the method to be effective. The SLNs were produced spherical in shape with entrapment efficiency (EE) upto 58%. A biphasic release pattern was observed in in vitro release studies followed by the Korsemeyer peppas model with fickian release kinetics. MTT assay results revealed that TPGS-VRL-SLNs and PL-VRL-SLNs were 39.5 and 18.5 time more effective than VRL in its original nature. The DOE method was believed to be a successful approach for development of VRL-SLNs. Enhanced entrapment with anticancer efficacy of TPGS-VRL-SLN was the result of emulsifying nature of GMO and the cytotoxic nature of TPGS which influences VRL effects. Such properties of TPGS-VRL-SLNs may prove them to be a potentially useful carrier in cancer chemotherapeutics.

####

For more information, please click here

Contacts:Faizan ul Haq

Copyright © Bentham Science Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

RELATED JOURNAL ARTICLE:

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Cancer

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

New nano-gel to protect children receiving chemotherapy from hearing loss June 17th, 2022

Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Nanomedicine

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Nanobiotechnology

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Biology's hardest working pigments and 'MOFs' might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022