Date18th, Feb 2019

Summary:

Researchers have developed a near weightless material, comprised mostly of air, capable of both withstanding and protecting against some of the most extreme temperatures experienced in aerospace and i...

Full text:

Home > Press > Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay

An optical image showing an hBNAG sample resting on the stamen of a flower.

CREDIT
X. Xu and X. Duan An optical image showing an hBNAG sample resting on the stamen of a flower. CREDIT X. Xu and X. Duan

Abstract: Researchers have developed a near weightless material, comprised mostly of air, capable of both withstanding and protecting against some of the most extreme temperatures experienced in aerospace and industrial environments. It performed well when heated to 900 �Celsius (C) and then rapidly cooled to -198 �C, the authors say.

Washington, DC | Posted on February 17th, 2019

Their new ceramic aerogel is engineered with unusual double-negative-index properties and demonstrates exceptional structural stability and superinsulation, making it an ideal material to be used in demanding applications like the heat shields on space vehicles. Aerogels are a composite material made mostly of air encompassed within a network of a solid medium, such as ceramic, metal, or carbon. Ceramic aerogels are incredibly lightweight and possess traits highly desired for enduring demanding environments. However, most conventional ceramic aerogels are brittle and susceptible to degradation due to extended high-temperature exposure or large and rapid temperature swings. According to the authors, these issues have greatly limited the use of ceramic aerogels as a super-insulating material. Xiang Xu and colleagues report on the design of a unique ceramic aerogel created using atomically thin sheets of hexagonal boron nitride (h-BN). By carefully engineering the ceramic aerogel microstructure, Xu et al. were able to achieve both a negative Poisson's ratio (a measure of a material's tendency to bulge outward when compressed) as well as a negative thermal expansion coefficient. To assess the material's mechanical and thermal capabilities, the authors ran a series of tests, including heating the aerogel to 900 �C and then rapidly cooling it -198 �C repeatedly, and at a rate of 275 �C per second. Xu et al. also evaluated the effect of long-term temperature stress by exposing the material to temperatures approaching 1500 �C in a vacuum. According to the results, the aerogel remained largely unchanged with near-zero strength loss following the rigorous trials. Manish Chhowalla and Deep Jariwala discuss the potential of the aerogel in a related Perspective.

####

For more information, please click here

Contacts:Science Press Package Team

202-326-6440

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

RELATED JOURNAL ARTICLE:

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors � Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Aerogels

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic �skin�: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G�ttingen University observes formation of "dark" moir� interlayer excitons for the first time August 19th, 2022

Materials/Metamaterials

At the water�s edge: Self-assembling 2D materials at a liquid�liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022