Date16th, Mar 2019

Summary:

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applicati...

Full text:

Home > Press > Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension

The experimental setup used by the researchers to test their magnetic sensor system, using green laser light for confocal microscopy.

Photos courtesy of RLE The experimental setup used by the researchers to test their magnetic sensor system, using green laser light for confocal microscopy. Photos courtesy of RLE

Abstract: A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping the electrical impulses inside a firing neuron, characterizing new magnetic materials, and probing exotic quantum physical phenomena.

Cambridge, MA | Posted on March 15th, 2019

The new approach is described today in the journal Physical Review Letters in a paper by graduate student Yi-Xiang Liu, former graduate student Ashok Ajoy, and professor of nuclear science and engineering Paola Cappellaro.

The technique builds on a platform already developed to probe magnetic fields with high precision, using tiny defects in diamond called nitrogen-vacancy (NV) centers. These defects consist of two adjacent places in the diamond�s orderly lattice of carbon atoms where carbon atoms are missing; one of them is replaced by a nitrogen atom, and the other is left empty. This leaves missing bonds in the structure, with electrons that are extremely sensitive to tiny variations in their environment, be they electrical, magnetic, or light-based.

Previous uses of single NV centers to detect magnetic fields have been extremely precise but only capable of measuring those variations along a single dimension, aligned with the sensor axis. But for some applications, such as mapping out the connections between neurons by measuring the exact direction of each firing impulse, it would be useful to measure the sideways component of the magnetic field as well.

Essentially, the new method solves that problem by using a secondary oscillator provided by the nitrogen atom�s nuclear spin. The sideways component of the field to be measured nudges the orientation of the secondary oscillator. By knocking it slightly off-axis, the sideways component induces a kind of wobble that appears as a periodic fluctuation of the field aligned with the sensor, thus turning that perpendicular component into a wave pattern superimposed on the primary, static magnetic field measurement. This can then be mathematically converted back to determine the magnitude of the sideways component.

The method provides as much precision in this second dimension as in the first dimension, Liu explains, while still using a single sensor, thus retaining its nanoscale spatial resolution. In order to read out the results, the researchers use an optical confocal microscope that makes use of a special property of the NV centers: When exposed to green light, they emit a red glow, or fluorescence, whose intensity depends on their exact spin state. These NV centers can function as qubits, the quantum-computing equivalent of the bits used in ordinary computing.

�We can tell the spin state from the fluorescence,� Liu explains. �If it�s dark,� producing less fluorescence, �that�s a �one� state, and if it�s bright, that�s a �zero� state,� she says. �If the fluorescence is some number in between then the spin state is somewhere in between �zero� and �one.��

The needle of a simple magnetic compass tells the direction of a magnetic field, but not its strength. Some existing devices for measuring magnetic fields can do the opposite, measuring the field�s strength precisely along one direction, but they tell nothing about the overall orientation of that field. That directional information is what the new detector system can n provide.

In this new kind of �compass,� Liu says, �we can tell where it�s pointing from the brightness of the fluorescence,� and the variations in that brightness. The primary field is indicated by the overall, steady brightness level, whereas the wobble introduced by knocking the magnetic field off-axis shows up as a regular, wave-like variation of that brightness, which can then be measured precisely.

An interesting application for this technique would be to put the diamond NV centers in contact with a neuron, Liu says. When the cell fires its action potential to trigger another cell, the system should be able to detect not only the intensity of its signal, but also its direction, thus helping to map out the connections and see which cells are triggering which others. Similarly, in testing new magnetic materials that might be suitable for data storage or other applications, the new system should enable a detailed measurement of the magnitude and orientation of magnetic fields in the material.

Unlike some other systems that require extremely low temperatures to operate, this new magnetic sensor system can work well at ordinary room temperature, Liu says, making it feasible to test biological samples without damaging them.

The technology for this new approach is already available. �You can do it now, but you need to first take some time to calibrate the system,� Liu says.

For now, the system only provides a measurement of the total perpendicular component of the magnetic field, not its exact orientation. �Now, we only extract the total transverse component; we can�t pinpoint the direction,� Liu says. But adding that third dimensional component could be done by introducing an added, static magnetic field as a reference point. �As long as we can calibrate that reference field,� she says, it would be possible to get the full three-dimensional information about the field�s orientation, and �there are many ways to do that.�

While this research was specifically aimed at measuring magnetic fields, the researchers say the same basic methodology could be used to measure other properties of molecules including rotation, pressure, electric fields, and other characteristics. The research was supported by the National Science Foundation and the U.S. Army Research Office.

####

For more information, please click here

Contacts:Ms. Karl-Lydie Jean-BaptisteMIT News Office

617-253-1682

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

PAPER: Nanoscale vector DC magnetometry via ancilla assisted frequency up-conversion:

Imaging

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors � Signal transduction probably occurs after receptor enrichment August 19th, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Snapshot measurement of single nanostructure�s circular dichroism March 25th, 2022

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors � Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Quantum Physics

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Quantum network nodes with warm atoms June 24th, 2022

Physics

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022

Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022

Magnetism/Magnons

�Nanomagnetic� computing can provide low-energy AI, researchers show May 6th, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic �skin�: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G�ttingen University observes formation of "dark" moir� interlayer excitons for the first time August 19th, 2022

Sensors

Engineers fabricate a chip-free, wireless electronic �skin�: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

�Life-like� lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to �5 Orders of Magnitude� Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With �Virtually No Power Consumption� When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Discoveries

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel �Hall effect� mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Military

New chip ramps up AI computing efficiency August 19th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New chip ramps up AI computing efficiency August 19th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

Quantum nanoscience

Scientists capture a �quantum tug� between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022