Date22nd, Mar 2019

Summary:

The proposed nanobiosensor developed by ICN2 Nanobioelectronics and Biosensors Group led by ICREA Prof. Arben Merkoçi and Vetgenomics takes advantage of the high sensitivity achieved when using gold n...

Full text:

Home > Press > Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature

Abstract: The proposed nanobiosensor developed by ICN2 Nanobioelectronics and Biosensors Group led by ICREA Prof. Arben Merko�i and Vetgenomics takes advantage of the high sensitivity achieved when using gold nanoparticles in the sensing surface. The sensor integrates DNA amplification and detection, which is of high interest for human, veterinarian and plant diagnostics. The results have been published in Analytical Chemistry.

Barcelona, Spain | Posted on March 21st, 2019

Detecting a single DNA sequence demands high sensitivity. DNA amplification is used to generate thousands of DNA copies so that it can be easily detected and identified. To do so scientists often employ a technique called polymerase chain reaction (PCR). This method requires specific equipment, including a heat source because of the alternate cycles of high and low temperatures needed to perform it.

Recombinase polymerase amplification (RPA) is a different procedure that has received much attention in recent years due to its versatility and isothermal performance. However, the technique offers better sensitivity between 37 �C and 40 �C, thus still needing a heat source.

In this context, researchers from the ICN2 have published a paper in Analytical Chemistry describing a new RPA amplification/detection approach at room temperature. Mohga Khater, last year PhD student, is the first author of this research carried out by the Nanobioelectronics and Biosensors Group, led by ICREA Prof. Arben Merko�i, with the participation of Dr Alfredo de la Escosura-Mu�iz (previous member of the Group). The research was fruit of a collaboration with Dr Laura Altet, from the company Vetgenomics.

Their approach takes advantage of the high sensitivity achieved when modifying the sensing surface with gold nanoparticles. Impedance is employed to measure the electrical resistance of amplified DNA on top of the nanoparticles. In consequence, the loss of sensitivity caused by lower temperature is overcome.

Moreover, the new in situ RPA sensor shows great advantages in terms of simplicity, sensitivity and portability together with allowing quantitative analysis of nucleic acid. The device integrates for the first time amplification and detection, which is strongly needed for in-field diagnostic applications such as early detection of plant pathogens. It is also of high potential interest for bioassays relevant to human or veterinarian diagnostics.

Article

####

For more information, please click here

Contacts:Alex Argemi

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Article reference:

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Nanomedicine

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Sensors

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Food/Agriculture/Supplements

Scientists offer solutions for risky tap water June 17th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

�Anti-rust� coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Nanobiotechnology

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Disinfectant mechanism of nano-sized electrostatic atomized water particles on SARS-CoV-2: Nano-sized electrostatic atomized water particles destroy SARS-CoV-2 envelope, protein, and RNA, thereby impairing the virus�s ability to bind to host cells June 17th, 2022