Date1st, Jun 2018

Summary:

Nanoscientists at Northwestern University have developed a blueprint to fabricate new heterostructures from different types of 2-D materials. 2-D materials are single atom layers that can be stacked t...

Full text:

Home > Press > Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials

Nanoscientists at Northwestern University have developed a blueprint to fabricate new heterostructures from different types of 2-D materials. The researchers describe their blueprint in the Journal of Applied Physics. In this image: Top: Vertical MoSe2-WSe2 heterostructure, radial MoS2-WS2 heterostructure, hybrid MoS2-WS2 heterostructure and Mose2-WSe2 alloy building block representations and crystal structure models Bottom: Vertical MoSe2-WSe2 heterostructure crystal structure model
CREDIT
Cain, Hanson and Dravid Nanoscientists at Northwestern University have developed a blueprint to fabricate new heterostructures from different types of 2-D materials. The researchers describe their blueprint in the Journal of Applied Physics. In this image: Top: Vertical MoSe2-WSe2 heterostructure, radial MoS2-WS2 heterostructure, hybrid MoS2-WS2 heterostructure and Mose2-WSe2 alloy building block representations and crystal structure models Bottom: Vertical MoSe2-WSe2 heterostructure crystal structure model CREDIT Cain, Hanson and Dravid

Abstract: Nanoscientists at Northwestern University have developed a blueprint to fabricate new heterostructures from different types of 2-D materials. 2-D materials are single atom layers that can be stacked together like "nano-interlocking building blocks." Materials scientists and physicists are excited about the properties of 2-D materials and their potential applications. The researchers describe their blueprint in the Journal of Applied Physics, from AIP Publishing.

Washington, DC | Posted on June 1st, 2018

"We've outlined an easy, deterministic and readily deployable way to stack and stitch these individual layers into orders not seen in nature," said Jeffrey Cain, an author on the paper who was formerly at Northwestern University but is now at Lawrence Berkeley National Laboratory and the University of California.

Cain explained that for nanoscientists, "the dream" is to combine 2-D materials in any order and collate a library of these heterostructures with their documented properties. Scientists can then select appropriate heterostructures from the library for their desired applications. For instance, the computer industry is trying to make transistors smaller and faster to increase computing power. A nanoscale semiconductor with favorable electronic properties could be used to make transistors in next-generation computers.

So far, nanoscientists have lacked clear methods for fabricating heterostructures, and have not yet been able to develop this library. In this work, the scientists looked to solve these fabrication issues. After identifying trends in the literature, they tested different conditions to map out the different parameters required to grow specific heterostructures from four types of 2-D materials: molybdenum disulfide and diselenide, and tungsten disulfide and diselenide. To fully characterize the atomically thin final products, the scientists used microscopy and spectrometry techniques.

The group was inspired by the science of time-temperature-transformation diagrams in classical materials, which maps out heating and cooling profiles to generate precise metallic microstructures. Based on this method, the researchers packaged their findings into one diagrammatic technique -- the Time-Temperature-Architecture Diagram.

"People had previously written papers for specific morphologies, but we have unified it all and enabled the generation of these morphologies with one technique," Cain said.

The unified Time-Temperature-Architecture Diagrams provide directions for the exact conditions required to generate numerous heterostructure morphologies and compositions. Using these diagrams, the researchers developed a unique library of nanostructures with physical properties of interest to physicists and materials scientists. The Northwestern University scientists are now examining the behaviors displayed by some materials in their library, like the electron flow across the stitched junctions between materials.

The researchers hope that their blueprint design will be useful for heterostructure fabrication beyond the first four materials. "Our specific diagrams would need revisions in the context of each new material, but we think that this idea is applicable and extendable to other material systems," Cain said.

####

About American Institute of PhysicsJournal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See http://jap.aip.org .

For more information, please click here

Contacts:Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

The article, "Controlled synthesis of 2D MX2 (M=Mo, W; X=S, Se) heterostructures and alloys," is written by Jeffrey D. Cain, Eve D. Hanson and Vinayak P. Dravid. The article appeared in the Journal of Applied Physics May 29, 2018, (DOI: 10.1063/1.5025710) and can be accessed at :

News and information

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors ' Signal transduction probably occurs after receptor enrichment August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Laboratories

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

2 Dimensional Materials

Buckyballs on gold are less exotic than graphene July 22nd, 2022

At the water's edge: Self-assembling 2D materials at a liquid'liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Solving the puzzle of 2D disorder: An interdisciplinary team developed a new method to characterize disorder in 2D materials June 17th, 2022

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM'19 October 14th, 2019

Possible Futures

New chip ramps up AI computing efficiency August 19th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Building blocks of the future for photovoltaics: Research team led by G'ttingen University observes formation of "dark" moir' interlayer excitons for the first time August 19th, 2022

Chip Technology

New chip ramps up AI computing efficiency August 19th, 2022

Engineers fabricate a chip-free, wireless electronic 'skin': The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Nanoelectronics

Atomic level deposition to extend Moore's law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Materials/Metamaterials

At the water's edge: Self-assembling 2D materials at a liquid'liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Scientists unravel 'Hall effect' mystery in search for next generation memory storage devices August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022