Date2nd, Apr 2019

Summary:

ggenstein-Leopoldshafen With its technology expertise in 3D microfabrication, Nanoscribe participates in the recently started research project "MiLiQuant", funded by the BMBF. Together with the compa...

Full text:

Home > Press > Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging

Model of a microlens directly printed onto the facet of a laser chip
(Source: Nanoscribe) Model of a microlens directly printed onto the facet of a laser chip (Source: Nanoscribe)

Abstract: ggenstein-Leopoldshafen With its technology expertise in 3D microfabrication, Nanoscribe participates in the recently started research project "MiLiQuant", funded by the BMBF. Together with the companies Q.ant, Zeiss and Bosch as well as the Johannes Gutenberg-University Mainz and the University Paderborn, miniaturized, frequency- and power-stable diode lasers will be developed within the next three years. Aim of the project is to develop largely alignment- and maintenance-free radiation sources for an industrial field of application:

Eggenstein-Leopoldshafen, Germany | Posted on April 1st, 2019

For example, sensors for medical diagnostics or autonomous driving as well as quantum-based imaging processes for medical technology.

Dr. Michael Thiel, Chief Science Officer at Nanoscribe, sees great potential for quantum technology in the use of additive micro-optics: "With our 3D printers, high-precision micro-optical components can be produced in shortest time with submicrometer resolution and enormous design freedom. We are happy to contribute our profound know-how to the MiLiQuant project for the further development of packaging technologies."

Nanoscribe 3D printers achieve outstanding precision based on two-photon polymerization (2PP). Micro-optics with challenging optical designs can be printed directly onto laser facets, glass fibers or microchips. The printed structures achieve an optical quality with surface roughness in the range of a few nanometers. In the MiLiQuant project, the printed components will be assembled with other elements into a compact package. Such miniaturized light sources are crucial for the alignment- and maintenance-free use of this quantum technological innovation.

####

About Nanoscribe GmbHNanoscribe GmbH, located in Eggenstein-Leopoldshafen near Karlsruhe (Germany), develops and provides 3D printers for microfabrication as well as photoresins and process solutions. Since the foundation in 2007, the company has managed to turn from a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) to a medium-sized company with more than 65 employees. Nanoscribe established itself as a global market- and technology leader for 3D printing on the micro- and mesoscale. Worldwide, more than 1,000 users in top universities and pioneer companies benefit from Nanoscribe�s technology and award-winning solutions for microfabrication.

Contacts:Anke WernerMedia ContactPhone +49 721 981 980 501

Copyright © Nanoscribe GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

More information about MiLiQuant can be found here (in German):

Imaging

An artificial intelligence probe help see tumor malignancy July 1st, 2022

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Nanomedicine

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Sensors

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Photonics/Optics/Lasers

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios�are we about to enter a new era of LN photonics? June 24th, 2022

Alliances/Trade associations/Partnerships/Distributorships

CEA & Partners Present �Powerful Step Towards Industrialization� Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present �Powerful Step Towards Industrialization� Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022