Date20th, Apr 2019

Summary:

Self-assembling synthetic materials come together when tiny, uniform building blocks interact and form a structure. However, nature lets materials like proteins of varying size and shape assemble, al...

Full text:

Home > Press > Multistep self-assembly opens door to new reconfigurable materials

Materials science and engineering professor Qian Chen, center, and graduate students Binbin Luo, left, and Ahyoung Kim find inspiration in biology to help investigate how order emerges from self-assembling building blocks of varying size and shape.

CREDIT
Photo by L. Brian Stauffer

Materials science and engineering professor Qian Chen, center, and graduate students Binbin Luo, left, and Ahyoung Kim find inspiration in biology to help investigate how order emerges from self-assembling building blocks of varying size and shape. CREDIT Photo by L. Brian Stauffer

Abstract: Self-assembling synthetic materials come together when tiny, uniform building blocks interact and form a structure. However, nature lets materials like proteins of varying size and shape assemble, allowing for complex architectures that can handle multiple tasks.

Champaign, IL | Posted on April 19th, 2019

University of Illinois engineers took a closer look at how nonuniform synthetic particles assemble and were surprised to find that it happens in multiples phases, opening the door for new reconfigurable materials for use in technologies such as solar cells and catalysis.

The findings are reported in the journal Nature Communications.

"Traditional self-assembly can be thought of like a grocery store stacking apples for a display in the produce section," said Qian Chen, a professor of materials science and engineering and lead author of the new study. "They would need to work with similarly sized and shaped apples - or particles in the case of self-assembly - to make the structure sturdy."

In the new study, Chen's group observed the behavior of microscale silver plates of varied size and nanoscale thickness in liquids. Because the particles used in self-assembling materials are so small, they behave like atoms and molecules, which allow researchers to use classical chemistry and physics theories to understand their behavior, the researchers said.

The nonuniform particles repel and attract according to laws of nature in plain, deionized water. However, when the researchers add salt to the water, changing electrostatic forces trigger a multistep assembly process. The nonuniform particles begin to assemble to form columns of stacked silver plates and further assemble into increasingly complex, ordered 3D hexagonal lattices, the team found.

"We can actually witness the particles assemble in this hierarchy using a light microscope," said Binbin Luo, a materials science and engineering graduate student and study co-author. "This way, we can track particle motions one by one and study the assembly dynamics in real time."

"The findings of this study may allow for the development of reconfigurable self-assembly materials," said Ahyoung Kim, a materials science and engineering graduate student and study co-author. "These materials can change from one type of solid crystal to another type with different properties for a variety of applications."

"Another benefit of this finding is that it can be generalized to other types of systems," Chen said. "If you have another type of nanoparticle, be it magnetic or semiconducting, this hierarchal assembly principal still applies, allowing for even more types of reconfigurable materials."

###

Graduate students John W. Smith and Zihao Ou, former postdoctoral researcher Juyeong Kim, and undergraduate student Zixuan Wu also contributed to this study.

The National Science Foundation supported this research.

####

For more information, please click here

Contacts:Lois Yoksoulian

217-244-2788

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

The paper "Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids" is available from:

Chemistry

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Water processing: light helps degrade hormones: KIT researchers use polymer membranes coated with titanium dioxide for photocatalytic cleaning � results are reported in Nature Nanotechnology April 22nd, 2022

Photocatalysts with built-in electric field helps to remove pollutants from water April 15th, 2022

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Magnetism/Magnons

�Nanomagnetic� computing can provide low-energy AI, researchers show May 6th, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Self Assembly

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Materials/Metamaterials

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

New route to build materials out of tiny particles May 27th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Energy

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Key in increasing efficiency of next-generation solar cell, found in �light absorption capacity�! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Organic water splitters get a boost June 10th, 2022

Solar/Photovoltaic

Key in increasing efficiency of next-generation solar cell, found in �light absorption capacity�! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022

Graphene crystals grow better under copper cover April 1st, 2022