Date17th, May 2019

Summary:

A nanocomposite invented at Rice University's Brown School of Engineering promises to be a superior high-temperature dielectric material for flexible electronics, energy storage and electric devices.

Full text:

Home > Press > New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction

Abstract: A nanocomposite invented at Rice University's Brown School of Engineering promises to be a superior high-temperature dielectric material for flexible electronics, energy storage and electric devices.

A lab video shows how quickly heat disperses from a composite of a polymer nanoscale fiber layer and boron nitride nanosheets. When exposed to light, both materials heat up, but the plain polymer nanofiber layer on the left retains the heat far longer than the composite at right. (Credit: Ajayan Research Group/Rice University)

Houston, TX | Posted on May 16th, 2019

The nanocomposite combines one-dimensional polymer nanofibers and two-dimensional boron nitride nanosheets. The nanofibers reinforce the self-assembling material while the "white graphene" nanosheets provide a thermally conductive network that allows it to withstand the heat that breaks down common dielectrics, the polarized insulators in batteries and other devices that separate positive and negative electrodes.

The discovery by the lab of Rice materials scientist Pulickel Ajayan is detailed in Advanced Functional Materials.

Research scientist M.M. Rahman and postdoctoral researcher Anand Puthirath of the Ajayan lab led the study to meet the challenge posed by next-generation electronics: Dielectrics must be thin, tough, flexible and able to withstand harsh environments.

"Ceramic is a very good dielectric, but it is mechanically brittle," Rahman said of the common material. "On the other hand, polymer is a good dielectric with good mechanical properties, but its thermal tolerance is very low."

Boron nitride is an electrical insulator, but happily disperses heat, he said. "When we combined the polymer nanofiber with boron nitride, we got a material that's mechanically exceptional, and thermally and chemically very stable," Rahman said.

The 12-to-15-micron-thick material acts as an effective heat sink up to 250 degrees Celsius (482 degrees Fahrenheit), according to the researchers. Tests showed the polymer nanofibers-boron nitride combination dispersed heat four times better than the polymer alone.

In its simplest form, a single layer of polyaramid nanofibers binds via van der Waals forces to a sprinkling of boron nitride flakes, 10% by weight of the final product. The flakes are just dense enough to form a heat-dissipating network that still allows the composite to retain its flexibility, and even foldability, while maintaining its robustness. Layering polyaramid and boron nitride can make the material thicker while still retaining flexibility, according to the researchers.

"The 1D polyaramid nanofiber has many interesting properties except thermal conductivity," Rahman said. "And boron nitride is a very interesting 2D material right now. They both have different independent properties, but when they are together, they make something very unique."

Rahman said the material is scalable and should be easy to incorporate into manufacturing.

Co-authors of the paper are Rice academic visitor Aparna Adumbumkulath, alumnus Thierry Tsafack, graduate students Morgan Barnes, Zixing Wang, Sandhya Susarla, Seyed Mohammad Sajadi, Devashish Salpekar and Hossein Robatjazi, academic visitor Fanshu Yuan, research scientist Ganguli Babu and Rafael Verduzco, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering; Sampath Kommandur and Shannon Yee of the Georgia Institute of Technology; and Kazuki Nomoto, SM Islam and Huili Xing of Cornell University. Ajayan is chair of Rice�s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Army Research Laboratory funded the research.

####

About Rice UniversityLocated on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation�s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice�s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger�s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:David Ruth713-348-6327

Mike Williams713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Read the abstract at:

Ajayan Research Group:

Rice Materials Science and NanoEngineering:

Brown School of Engineering:

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Flexible Electronics

University of Houston research allows for 3D printing of 'organic electronics' Micro-scale organic electronics for use in bioelectronics via multiphoton 3D printers June 24th, 2022

2 Dimensional Materials

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Solving the puzzle of 2D disorder: An interdisciplinary team developed a new method to characterize disorder in 2D materials June 17th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Videos/Movies

Scientists prepare for the world�s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM�19 October 14th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Military

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Nanostructured fibers can impersonate human muscles June 3rd, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios�are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios�are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022