Date25th, May 2019

Summary:

Researchers at Osaka University develop a new process for producing palladium nanoparticles that are 12 times more sensitive to hydrogen than those made with previous methods -- devices that may be vi...

Full text:

Home > Press > Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity

Illustration of how piezoelectric resonance can be used to evaluate the separation between the palladium particles during device fabrication. As palladium nanoparticles (yellow) are being added to the sample, the vibrating piezoelectric material (green rectangular parallelepiped) generates an alternating electric field (blue arrows) near the substrate (gray) surface, creating a current flow in deposited palladium (orange particles). This causes some of the vibrational energy of the piezoelectric material to be lost. The value of the energy loss is greatest when the palladium particles contact each other, so deposition can be stopped at the optimal nanoparticle concentration.

CREDIT
Osaka University Illustration of how piezoelectric resonance can be used to evaluate the separation between the palladium particles during device fabrication. As palladium nanoparticles (yellow) are being added to the sample, the vibrating piezoelectric material (green rectangular parallelepiped) generates an alternating electric field (blue arrows) near the substrate (gray) surface, creating a current flow in deposited palladium (orange particles). This causes some of the vibrational energy of the piezoelectric material to be lost. The value of the energy loss is greatest when the palladium particles contact each other, so deposition can be stopped at the optimal nanoparticle concentration. CREDIT Osaka University

Abstract: Researchers at Osaka University develop a new process for producing palladium nanoparticles that are 12 times more sensitive to hydrogen than those made with previous methods -- devices that may be vital to the transition to a hydrogen energy ecosystem.

Osaka, Japan | Posted on May 24th, 2019

A team at Osaka University has invented a new process for creating high-precision sensing devices that respond to the presence of hydrogen gas. By carefully controlling the deposition of metallic nanoparticles on a silicon surface, the researchers were able to create a sensor that can detect low levels of hydrogen on the basis of changes in electrical current. This research may have important benefits as part of a switch to hydrogen-based fuels, which could power the zero-emission cars of the future and help fight anthropogenic climate change.

To fabricate a hydrogen sensor, the researchers deposited metallic palladium on a silicon substrate. The deposited palladium forms nanoparticles on the substrate, and they act like tiny islands that are excellent conductors of electricity, but, because they do not form a connected network, the current across the device is very small.

However, when hydrogen atoms are present, they are absorbed into the palladium nanoparticles, increasing volume of the nanoparticles, and then bridge the gaps between the islands. Eventually, a completely connected path is formed, and electrons can flow with much less resistance. In this way, even a tiny change in hydrogen concentration can lead to a massive increase in current, so the devices can be made very sensitive.

A significant challenge the Osaka researchers had to overcome was precisely controlling the gaps between islands to deposit in the first place. If the deposition time was too short, gaps between the nanoparticles are too wide and they would not be bridged even when hydrogen was present. Conversely, if the deposition time was too long, the nanoparticles would form a connected network on their own, even before hydrogen was applied. To optimize the response of the sensor, the research team developed a novel method for monitoring and controlling the deposition of palladium called piezoelectric resonance.

"Piezoelectric materials, such as a quartz crystal in a wristwatch, can vibrate at a very specific frequency in response to an applied voltage," senior author Dr. Hirotsugu Ogi explains. Here, a piece of piezoelectric lithium niobate was set to vibrate underneath the sample during the metallic nanoparticle deposition. The oscillating piezoelectric created an electric field around the sample, which in turn induced a current in the device that depended on the connectivity of the palladium network.

Then, the attenuation of the oscillation changes depending on the connectivity. Therefore, by listening to the sound (measuring the attenuation) of the piezoelectric material, the connectivity can be monitored.

"By optimizing the deposition time using the piezoelectric resonance method, the resulting hydrogen sensors were 12 times more sensitive than before," first author Dr. Nobutomo Nakamura says. "These devices may represent a step towards a cleaner energy future involving hydrogen."

####

About Osaka UniversityOsaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

For more information, please click here

Contacts:Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

The work is published in Applied Physics Letters as "Precise control of hydrogen response of semicontinuous palladium ?lm using piezoelectric resonance method." (DOI:10.1063/1.5094917)E:

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Sensors

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Environment

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Water processing: light helps degrade hormones: KIT researchers use polymer membranes coated with titanium dioxide for photocatalytic cleaning � results are reported in Nature Nanotechnology April 22nd, 2022

National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater April 15th, 2022

Energy

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Key in increasing efficiency of next-generation solar cell, found in �light absorption capacity�! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Organic water splitters get a boost June 10th, 2022

Automotive/Transportation

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

A sunlight-driven �self-healing� anti-corrosion coating May 27th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022