Date28th, Jun 2019

Summary:

Researcher: Until now, we could only look at dead, static nanomaterials New technology could revolutionize nanoscience similar to how live cell imaging revolutionized biology Team used new te...

Full text:

Home > Press > New technology gives insight into how nanomaterials form and grow: Researchers examine �living� nanomaterials for first time

Nathan Gianneschi Nathan Gianneschi

Abstract: �Researcher: �Until now, we could only look at �dead,� static nanomaterials��New technology could revolutionize nanoscience similar to how live cell imaging revolutionized biology�Team used new technique to watch metal-organic nanotubes form

Evanston, IL | Posted on June 27th, 2019

A new form of electron microscopy allows researchers to examine nanoscale tubular materials while they are �alive� and forming liquids � a first in the field.

Developed by a multidisciplinary team at Northwestern University and the University of Tennessee, the new technique, called variable temperature liquid-phase transmission electron microscopy (VT-LPTEM), allows researchers to investigate these dynamic, sensitive materials with high resolution. With this information, researchers can better understand how nanomaterials grow, form and evolve.

�Until now, we could only look at �dead,� static materials,� said Northwestern�s Nathan Gianneschi, who co-led the study. �This new technique allows us to examine dynamics directly � something that could not be done before.�

Gianneschi is the Jacob and Rosaline Cohn Professor of Chemistry in Northwestern�s Weinberg College of Arts and Sciences, professor of materials science and engineering and biomedical engineering in the McCormick School of Engineering, and associate director of the International Institute for Nanotechnology. He co-led the study with David Jenkins, associate professor of chemistry at University of Tennessee, Knoxville.

After live-cell imaging became possible in the early 20th century, it revolutionized the field of biology. For the first time, scientists could watch living cells as they actively developed, migrated and performed vital functions. Before, researchers could only study dead, fixed cells. The technological leap provided critical insight into the nature and behavior of cells and tissues.

�We think LPTEM could do for nanoscience what live-cell light microscopy has done for biology,� Gianneschi said.

LPTEM allows researchers to mix components and perform chemical reactions while watching them unfold beneath a transmission electron microscope.

In this work, Gianneschi, Jenkins and their teams studied metal-organic nanotubes (MONTs). A subclass of metal-organic frameworks, MONTs have high potential for use as nanowires in miniature electronic devices, nanoscale lasers, semiconductors and sensors for detecting cancer biomarkers and virus particles. MONTs, however, are little explored because the key to unlocking their potential lies in understanding how they are formed.

For the first time, the Northwestern and University of Tennessee team watched MONTs form with LPTEM and made the first measurements of finite bundles of MONTs on the nanometer scale.

The research, �Elucidating the growth of metal-organic nanotubes combining isorecticular synthesis with liquid-cell transmission electron microscopy,� was supported by the National Science Foundation (award numbers ECCS-1542205 and DMR-1720139) and the Army Research Office (W911NF-18-1-0359).

The research was a collaboration between Gianneschi�s laboratory, which has expertise in transmission electron microscopy, and Jenkins�s laboratory, which has expertise in metal-organic nanotubes. Northwestern postdoctoral fellow Karthikeyan Gnanasekaran and University of Tennessee graduate student Kristina Vailonis served as the paper�s co-first authors. Gianneschi is also a member of the Simpson Querrey Institute and the Chemistry of Life Processes Institute at Northwestern.

####

For more information, please click here

Contacts:Amanda Morris at 847-467-6790 or

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

The paper was published online this week in the Journal of the American Chemical Society:

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Nanomedicine

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Nanobiotechnology

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Disinfectant mechanism of nano-sized electrostatic atomized water particles on SARS-CoV-2: Nano-sized electrostatic atomized water particles destroy SARS-CoV-2 envelope, protein, and RNA, thereby impairing the virus�s ability to bind to host cells June 17th, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present �Powerful Step Towards Industrialization� Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022