Date4th, Jul 2019

Summary:

In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in...

Full text:

Home > Press > New study shows nanoscale pendulum coupling

Researchers could synchronize two crystal optomechanical oscillators mechanically coupled.

CREDIT
D. Navarro Researchers could synchronize two crystal optomechanical oscillators mechanically coupled. CREDIT D. Navarro

Abstract: In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in anti-phase. Since then, synchronization of coupled oscillators in nature has been described at several scales: from heart cells to bacteria, neural networks and even in binary star systems -spontaneously synchronized.

Barcelona, Spain | Posted on July 3rd, 2019

Mechanical oscillators are typical in these systems. In the nanoscale, the challenge is to synchronize these. In these lines, an article published in the journal Physical Review Letters -by a team of researchers from the Institute of Nanoscience and Nanotechnology of the UB (IN2UB) together with ICN2 researchers showed a version of mechanic oscillators at a nanoscale. Through a series of experiments, researchers could synchronize two crystal optomechanical oscillators mechanically coupled, located in the same silicon platform and activated through independent optical impulses. These nanometric oscillators have a size of 15 micrometres per 500 nanometres.

While a mechanical pendulum receives impulses from the clock to keep its movement, the optomechanical pendulums use the pressure from radiation, but interaction of oscillators is the same in both experiments. The study also shows that the collective dynamics can be controlled acting externally on one oscillator only.

"Results show a good base for the creation of reconfigurable networks of optomechanical oscillators thanks to these collective dynamics that are dominated by a weak mechanical coupling. This could have applications in photonics, for instance, for pattern recognition tasks or a more complex cognitive process", notes Daniel Navarro Urrios, from IN2UB, who led the research.

####

For more information, please click here

Contacts:Bibiana Bonmat�

0034-934-035-544

Copyright © University of Barcelona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Article reference:

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Physics

Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022

Observation of fractional exclusion statistics in quantum critical matter May 27th, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can �smell� disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present �Powerful Step Towards Industrialization� Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022