| Date | 14th, Jul 2021 |
|---|
image: In this new, false-color image of a lithium-metal test battery produced by Sandia National Laboratories, high-rate charging and recharging red lithium metal greatly distorts the green separator, creating tan reaction byproducts, to the surprise of scientists. view more
Credit: Katie Jungjohann, Sandia National Laboratories
ALBUQUERQUE, N.M. -- For decades, scientists have tried to make reliable lithium-metal batteries. These high-performance storage cells hold 50% more energy than their prolific, lithium-ion cousins, but higher failure rates and safety problems like fires and explosions have crippled commercialization efforts. Researchers have hypothesized why the devices fail, but direct evidence has been sparse.
Now, the first nanoscale images ever taken inside intact, lithium-metal coin batteries (also called button cells or watch batteries) challenge prevailing theories and could help make future high-performance batteries, such as for electric vehicles, safer, more powerful and longer lasting.
"We're learning that we should be using separator materials tuned for lithium metal," said battery scientist Katie Harrison, who leads Sandia National Laboratories' team for improving the performance of lithium-metal batteries.
Sandia scientists, in collaboration with Thermo Fisher Scientific Inc., the University of Oregon and Lawrence Berkeley National Laboratory, published the images recently in
