Date18th, Sep 2021

Summary:

Coating Shewanella bacteria with silver nanoparticles greatly boosts the performance of biofilm-based microbial fuel cells, researchers report. It achieves this effect by improving the transfer of ele...

Full text:

Home > Press > Silver nanoparticles boost performance of microbial fuel cells

Abstract: Coating Shewanella bacteria with silver nanoparticles greatly boosts the performance of biofilm-based microbial fuel cells, researchers report. It achieves this effect by improving the transfer of electrons from the microbe to graphene electrodes in the fuel cells.

Washington, DC | Posted on September 17th, 2021

Microbial fuel cells (MFCs) use bacteria to directly convert the chemical energy stored in organic matter to electricity by harvesting the energy generated through metabolism with electrodes. Since MFCs can use a wide range of organic fuels to create electricity, the technology is attractive for renewable power generation from biomass and wastewater treatment. Among the bacteria used to power these systems, Shewanella species are particularly well-suited for the role and have been extensively studied. However, despite considerable efforts to improve these systems, current Shewanella MFCs often suffer from low current and power densities largely limited by the inefficient transfer of electrons between the microbe and the anode. Here, Bocheng Cao and colleagues report a novel strategy for boosting the performance of Shewanella MFCs. Cao et al. found that when the bacteria are placed on a reduced graphene oxide/silver nanoparticle (rGO/Ag) anode, silver nanoparticles become associated with their cellular membranes, greatly enhancing their electron-transfer efficiency. According to the authors, the resulting MFCs have a maximum current density of 3.85 milliamperes per square centimeter, a power density of 6.6 watts per meter squared, and a coulombic efficiency of 81%, all of which are considerably higher than other MFCs reported to date. �The optimized electron extraction and high CE reported by Cao et al. showcases that knowledge of molecular mechanisms of bacterial electron transfer can aid in designing microbial electrochemical technologies,� write Erin Gaffney and Shelley Minteer in a related Perspective.

####

For more information, please click here

Contacts:Science Press Package TeamAmerican Association for the Advancement of Science/AAAS

Expert Contacts

Xiangfeng DuanUniversity of California, Los Angeles/California NanoSystems Institute

Yu HuangUniversity of California, Los Angeles/California NanoSystems Institute

Shelley MinteerUniversity of Utah

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

News and information

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022

Organic water splitters get a boost June 10th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

2 Dimensional Materials

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

UCI scientists turn a hydrogen molecule into a quantum sensor: New technique enables precise measurement of electrostatic properties of materials April 22nd, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Possible Futures

Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022

Marching to the Cadence of Electronics: Innovation A new paper in Nature validates technology developed by John Bowers and collaborators June 10th, 2022

Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022

Decoding a key part of the cell, atom by atom June 10th, 2022

Discoveries

Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022

Marching to the Cadence of Electronics: Innovation A new paper in Nature validates technology developed by John Bowers and collaborators June 10th, 2022

Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022

Decoding a key part of the cell, atom by atom June 10th, 2022

Announcements

Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022

Organic water splitters get a boost June 10th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

Journal of Pharmaceutical Analysis publishes method for the fast detection of a key antiviral: Researchers from China demonstrate a novel nanobody-based detection of recombinant human interferon α2b using a strip test June 10th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Decoding a key part of the cell, atom by atom June 10th, 2022

Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022

Organic water splitters get a boost June 10th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

Energy

Organic water splitters get a boost June 10th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022

Automotive/Transportation

A sunlight-driven �self-healing� anti-corrosion coating May 27th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Re-jigged cathode recipe gives new hope to solid-state batteries for electric vehicles March 25th, 2022

Fuel Cells

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance December 17th, 2021