Date16th, Oct 2021

Summary:

Weaving intricate, microscopic patterns of crystal or glass is now possible thanks to engineers at Rice University.

Full text:

Home > Press > Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics

A cutaway schematic shows the two-photon enabled printing process for silica structures with sub-200 nanometer resolution. Materials scientists at Rice University say the technique could make it practical to print micro-scale electronic, mechanical and photonic devices. (Credit: Illustration by Boyu Zhang/Rice University) A cutaway schematic shows the two-photon enabled printing process for silica structures with sub-200 nanometer resolution. Materials scientists at Rice University say the technique could make it practical to print micro-scale electronic, mechanical and photonic devices. (Credit: Illustration by Boyu Zhang/Rice University)

Abstract: Weaving intricate, microscopic patterns of crystal or glass is now possible thanks to engineers at Rice University.

Houston, TX | Posted on October 15th, 2021

Rice materials scientists are creating nanostructures of silica with a sophisticated 3D printer, demonstrating a method to make micro-scale electronic, mechanical and photonic devices from the bottom up. The products can be doped and their crystal structures tuned for various applications.

The study led by Jun Lou, a professor of materials science and nanoengineering at the George R. Brown School of Engineering, appears in Nature Materials.

The electronics industry is built upon silicon, the basic semiconducting substrate for microprocessors for decades. The Rice study addresses the limitations of top-down manufacturing by turning the process on its head.

�It�s very tough to make complicated, three-dimensional geometries with traditional photolithography techniques,� Lou said. �It�s also not very �green� because it requires a lot of chemicals and a lot of steps. And even with all that effort, some structures are impossible to make with those methods.

�In principle, we can print arbitrary 3D shapes, which could be very interesting for making exotic photonic devices,� he said. �That�s what we�re trying to demonstrate.�

The lab uses a two-photon polymerization process to print structures with lines only several hundred nanometers wide, smaller than the wavelength of light. Lasers �write� the lines by prompting the ink to absorb two photons, initiating free-radical polymerization of the material.

�Normal polymerization involves polymer monomers and photoinitiators, molecules that absorb light and generate free radicals,� said Rice graduate student and co-lead author Boyu Zhang of the process that commonly uses ultraviolet light in 3D printing and to cure coatings and in dental applications.

�In our process, the photoinitiators absorb two photons at the same time, which requires a lot of energy,� he said. �Only a very small peak of this energy causes polymerization, and that in only a very tiny space. That�s why this process allows us to go beyond the diffraction limit of light.�

The printing process required the Rice lab to develop a unique ink. Zhang and co-lead author Xiewen Wen, a Rice alumnus, created resins containing nanospheres of silicon dioxide doped with polyethylene glycol to make them soluble.

After printing, the structure is solidified through high-temperature sintering, which eliminates all the polymer from the product, leaving amorphous glass or polycrystalline cristobalite. �When heated, the material goes through phases from glass to crystal, and the higher the temperature, the more ordered the crystals become,� Lou said.

The lab also demonstrated doping the material with various rare earth salts to make the products photoluminescent, an important property for optical applications. The lab�s next goal is to refine the process to achieve sub-10 nanometer resolution.

Co-authors of the paper are Rice assistant research professor Hua Guo, research scientists Guanhui Gao and Xiang Zhang, alumnus Yushun Zhao and graduate students Qiyi Fang and Christine Nguyen; Rice alumnus Fan Ye of Tsinghua University, Beijing; University of Houston alumnus Shuai Yue, now a postdoctoral researcher at the Chinese Academy of Sciences; and Jiming Bao, a professor of electrical and computer engineering at the University of Houston.

Co-principal investigators are Rice alumnus Weipeng Wang, now a professor at Tsinghua University, China; and Rice�s Jacob Robinson, an associate professor of electrical and computer engineering and of bioengineering, and Pulickel Ajayan, chair of the Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Welch Foundation (C-1716, E-1728) supported the research.

####

About Rice UniversityLocated on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation�s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rice�s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger�s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:Jeff Falk713-348-6775

Mike Williams713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Read the abstract at:

The Nanomaterials, Nanomechanics and Nanodevices Lab (Lou group):

Department of Materials Science and NanoEngineering:

George R. Brown School of Engineering:

News and information

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

3D & 4D printing/Additive-manufacturing

New 3D-Bioprinter + Bioink Use Living Cells Straight From Culture Plate: Cell models mimicking natural tissue topography herald new era for biomedical research April 13th, 2021

Dynamic 3D printing process features a light-driven twist: Light provides freedom to control each layer and improves precision and speed February 4th, 2021

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Possible Futures

Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022

Emerging vaccine nanotechnology June 3rd, 2022

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Chip Technology

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Optical computing/Photonic computing

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice �metalens� could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Discoveries

Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022

Emerging vaccine nanotechnology June 3rd, 2022

�Fruitcake� structure observed in organic polymers June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Announcements

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanostructured fibers can impersonate human muscles June 3rd, 2022

Bacteria-killing drills get an upgrade Visible light triggers: Rice�s molecular machines to treat infections June 1st, 2022

A new step in the search for room-temperature superconductors May 27th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Photonics/Optics/Lasers

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice �metalens� could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022