| Date | 8th, Feb 2022 |
|---|
Graphene is a carbon material that forms extremely thin layers. Because of its unusual properties, it is interesting for many technical applications. This also applies to polycyclic aromatic hydrocarbons (PAHs), which can be regarded as cut-outs of graphene. They are considered promising materials for organic photovoltaics or for field-effect transistors.
Large, single-layer PAH molecules - often referred to as nanographenes - are well researched. In contrast, little is known about PAHs arranged into columnar multilayer stacks.
Targeting multilayer nanographenes Now a new approach to these materials is opening up: researchers from Julius-Maximilians-Universitat Wurzburg (JMU) in Bavaria, Germany, present a sophisticated method for designing precisely defined, multilayered nanographenes in the journal Nature Chemistry.
"In our lab, we have synthesised a custom-made nanographene that is equipped with two cavities on both sides of its planar core," says Professor Frank Wurthner, head of the JMU Centre for Nanosystems Chemistry. The cavities are formed by the attachment of bulky substituents. As a result, the nanographene can hold a maximum of two smaller PAHs on its top and bottom sides.
In their experiments, the Wurzburg chemists observed that the nanographene formed two- and three-layer PAH complexes in solution. In addition, the team was able to isolate pairs of these complexes as solids, i.e. as four- and six-layer PAHs, as well as other multilayer compounds.
The structural details of these products were confirmed by crystallographer Dr. Kazutaka Shoyama; doctoral students Magnus Mahl and M.A. Niyas accomplished the synthesis, supramolecular binding studies and quantum-chemical calculations.
Possible application in solar cells "Our concept for organising multilayer nanographenes should be applicable to the design of functional organic materials," explains Professor Wurthner. He says the strategy of using multilayer nanographenes for charge carrier generation in solar cells is promising.
Research Report: Multilayer stacks of polycyclic aromatic hydrocarbons
Related Links
Julius Maximilian University of Wurzburg
Nano Technology News From SpaceMart.comComputer Chip Architecture, Technology and Manufacture
Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.
With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.
Our news coverage takes time and effort to publish 365 days a year.
If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5 Billed Monthly
paypal only
Discovery unravels how atomic vibrations emerge in nanomaterials
Charlottesville VA (SPX) Feb 07, 2022
A hundred years of physics tells us that collective atomic vibrations, called phonons, can behave like particles or waves. When they hit an interface between two materials, they can bounce off like a tennis ball. If the materials are thin and repeating, as in a superlattice, the phonons can jump between successive materials.
Now there is definitive, experimental proof that at the nanoscale, the notion of multiple thin materials with distinct vibrations no longer holds. If the materials are thin, t ... read more
