Date19th, Mar 2022

Summary:

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects, and electronic transport. For instance, chiral organic molecules have been intensively studi...

Full text:

Home > Press > Magnet-free chiral nanowires for spintronic devices

Tellurium chiral structures

CREDIT
CIC nanoGUNE Tellurium chiral structures CREDIT CIC nanoGUNE

Abstract: Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects, and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as Tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear.

Donostia / San Sebastian, Spain | Posted on March 18th, 2022

In this recently publish work, it was shown that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. This was found by recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance.

The Nanodevices group at nanoGUNE is focused in researching the electronic properties of systems in reduced dimensions, and is a worldwide leading group in the field of spintronics. Ikerbasque Profesor Luis Hueso, leader of the Nanodevices group describes the excitement of the research group when analyzing the results of the experiments: �It has been amazing to perfectly identify the nanowires formed by right- or left-handed Tellurium chains thanks to the high-resolution STEM images, and to transfer individually selected nanowires onto Si/SiO2 in order to carry out the transport experiments that made us discover that the current induced spin polarization is reversed for opposite nanowire handedness�.

FOR FURTHER INFORMATION:

Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires

Francesco Calavalle, Manuel Su�rez-Rodr�guez, Beatriz Mart�n-Garc�a, Annika Johansson, Diogo C. Vaz, Haozhe Yang, Igor V. Maznichenko, Sergey Ostanin, Aurelio Mateo-Alonso, Andrey Chuvilin, Ingrid Mertig, Marco Gobbi, F�lix Casanova, Luis E. Hueso

####

For more information, please click here

Contacts:Irati KortabitarteElhuyar Fundazioa

Office: 34-943-363-040

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Nature Materials, DOI:

News and information

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Possible Futures

Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022

Emerging vaccine nanotechnology June 3rd, 2022

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Spintronics

NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices February 11th, 2022

Terahertz light-driven spin-lattice control: A new potential path to faster and more efficient data storage January 7th, 2022

New version of organic electronics for rational management of energy: Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon December 10th, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Chip Technology

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Quantum Computing

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

New error mitigation approach helps quantum computers level up: New error mitigation approach helps quantum computers level up, ASCR: Quantum computers are prone to errors that limit their usefulness in scientific research May 6th, 2022

In balance: Quantum computing needs the right combination of order and disorder: Study shows that disorder in quantum computer chips needs to be designed to perfection / Publication in �Nature Communications� May 6th, 2022

Discoveries

Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022

Emerging vaccine nanotechnology June 3rd, 2022

�Fruitcake� structure observed in organic polymers June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Announcements

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

�Fruitcake� structure observed in organic polymers June 3rd, 2022

Progressive Medicinal and Herbal Nanoscience for Targeted Drug Delivery Systems June 3rd, 2022

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022