Date7th, Jan 2023

Summary:

A new miniscule nitrogen dioxide sensor could help protect the environment from vehicle pollutants that cause lung disease and acid rain.

Full text:

Home > Press > New nanowire sensors are the next step in the Internet of Things

Abstract: A new miniscule nitrogen dioxide sensor could help protect the environment from vehicle pollutants that cause lung disease and acid rain.

Canberra, Australia | Posted on January 6th, 2023

Researchers from TMOS, the Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems have developed a sensor made from an array of nanowires, in a square one fifth of a millimetre per side, which means it could be easily incorporated into a silicon chip.

In research published in the latest issue of Advanced Materials, PhD scholar at the Centre�s Australian National University team and lead author Shiyu Wei describes the sensor as requiring no power source, as it runs on its own solar powered generator.

Wei says, �As we integrate devices like this into the sensor network for the Internet of Things technology, having low power consumption is a huge benefit in terms of system size and costs. The sensor could be installed in your car with an alarm sounding and alerts sent to your phone if it detects dangerous levels of nitrogen dioxide emitted from the exhaust.�

Co-lead author Dr. Zhe Li says �This device is just the beginning. It could also be adapted to detect other gases, such as acetone, which could be used as a non-invasive breath test of ketosis including diabetic ketosis, which could save countless lives.

Existing gas detectors are bulky and slow, and require a trained operator. In contrast, the new device can quickly and easily measure less than 1 part per billion, and the TMOS prototype used a USB interface to connect to a computer.

Nitrogen dioxide is one of the NOx category of pollutants. As well as contributing to acid rain, it is dangerous to humans even in small concentrations. It is a common pollutant from cars, and also is created indoors by gas stoves.

The key to the device is a PN junction � the engine of a solar cell � in the shape of a nanowire (a small hexagonal pillar with diameter about 100 nanometres, height 3 to 4 microns) sitting on a base. An ordered array of thousands of nanowire solar cells, spaced about 600 nanometres apart formed the sensor.

The whole device was made from indium phosphide, with the base doped with zinc to form the P part, and the N section at the tip of the nanowires, doped with silicon. The middle part of each nanowire was undoped (the intrinsic section, I) separating the P and N sections.

Light falling on the device causes a small current to flow between the N and P sections. However, if the intrinsic middle section of the PN junction is touched by any nitrogen dioxide, which is a strong oxidiser that sucks away electrons, this will cause a dip in the current.

The size of the dip allows the concentration of the nitrogen dioxide in the air to be calculated. Numerical modelling by Dr Zhe Li, a postdoctoral fellow in EME, showed that the PN junction�s design and fabrication are crucial to maximising the signal.

The characteristics of nitrogen dioxide � strong adsorption, strong oxidisation � make it easy for indium phosphide to distinguish it from other gases. The sensor could also be optimised to detect other gases by functionalising the indium phosphide nanowire surface.

TMOS Chief Investigator Professor Lan Fu, leader of the research group says �The ultimate aim is to sense multiple gases on the one small chip. As well as environmental pollutants, these sensors could be deployed for healthcare, for example, for breath tests for biomarkers of disease.

�The tiny gas sensor is easily integratable and scalable. This, combined with meta-optics, promises to achieve multiplexing sensors with high performance and multiple functionalities, which will enable them to fit into smart sensing networks. TMOS is a network of research groups across Australia dedicated to progressing this field.

�The technologies we develop will transform our life and society in the coming years, with large‐scale implementation of Internet of Things technology for real‐time data collection and autonomous response in applications such as air pollution monitoring, industrial chemical hazard detection, smart cities, and personal healthcare.�

####

For more information, please click here

Contacts:Media Contact

Samara ThornARC Centre of Excellence for Transformative Meta-Optical Systems

Cell: 421276272Expert Contacts

Lan FuTMOS, Research School of Physics, Australian National University

@tmos_arcShiyu WeiTMOS, Research School of Physics, Australian National University

@TMOS, Research School of Physics, Australian National University

Copyright © ARC Centre of Excellence for Transformative Meta-Optical Systems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark: Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

ARTICLE TITLE

News and information

Graphene Flagship start-up Bedimensional closes a second �10 million investment round February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Internet-of-Things

New chip ramps up AI computing efficiency August 19th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Possible Futures

Scientists boost quantum signals while reducing noise: �Squeezing� noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Sensors

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Ultrathin vanadium oxychloride demonstrates strong optical anisotropic properties Two-dimensional material could make novel strain sensors, photodetectors and other nanodevices a reality January 6th, 2023

Wafer-scale 2D MoTe₂ layers enable highly-sensitive broadband integrated infrared detector January 6th, 2023

Discoveries

Scientists boost quantum signals while reducing noise: �Squeezing� noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Announcements

Graphene Flagship start-up Bedimensional closes a second �10 million investment round February 10th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

Photonic Materials: Recent Advances and Emerging Applications February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists boost quantum signals while reducing noise: �Squeezing� noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Environment

Temperature-sensing building material changes color to save energy January 27th, 2023

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

New method of reducing carbon dioxide could be a golden solution to pollution December 9th, 2022

Automotive/Transportation

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023