The Intersection of AI and Nanophotonics
The integration of AI with nanophotonics is an intriguing prospect. While not a panacea for all challenges, AI can potentially assist in designing nanophotonic devices. Conventional inverse design relies on trial-and-error processes, which are labor-intensive and time-consuming. In contrast, machine learning, a subset of AI, provides data-driven methods that leverage large training sets to improve the optimization of designs for specific tasks. The question of whether and how AI can benefit inverse design remains open, but the potential benefits warrant further research efforts. The synergy between AI and nanophotonics goes beyond passive assistance. The rapid growth of machine learning has revealed the inefficiency of general-purpose processors for implementing neural networks, leading to the development of application-specific hardware. Nanophotonic circuits, which can process coherent light signals, offer advantages in speed and power efficiency over electronic architectures. Recent advances have demonstrated that specially designed nanophotonic circuits can perform machine learning tasks like inference, making the relationship between AI and nanophotonics reciprocal and interactive.Bridging the Knowledge Gap
As AI and nanophotonics have distinct backgrounds, there is often a knowledge gap for those interested in this interdisciplinary area. A new book ("Nanophotonics and Machine Learning – Concepts, Fundamentals, and Applications"), the first of its kind, aims to introduce the fundamentals of both nanophotonics and machine learning, specifically deep learning, and to help readers understand how these fields can enhance each other.To maintain a compact volume and balance between fundamentals and applications, as well as between nanophotonics and machine learning, this book omits some introductory content and areas of nanophotonics, which are widely available elsewhere. Some aspects of nanophotonics, such as photonic crystals and circuits, are not included either, as they have been covered in classic textbooks and monographs and may be considered on the periphery of nanophotonics if defined by the subwavelength dimensions of the building blocks and their separations.
With these considerations in mind, the authors, Kan Yao and Yuebing Zheng from the Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, hope that readers of all levels –(under)graduate students, professionals, and researchers new to or working in either field – will find this book accessible and valuable.
By Michael is author of three books by the Royal Society of Chemistry: Nano-Society: Pushing the Boundaries of Technology, Nanotechnology: The Future is Tiny, and Nanoengineering: The Skills and Tools Making Technology Invisible Copyright © NanowerkNanowerk Newsletter
Get our Nanotechnology Spotlight updates to your inbox!
Become a Spotlight guest author! Join our large and growing group of guest contributors. Have you just published a scientific paper or have other exciting developments to share with the nanotechnology community? Here is how to publish on nanowerk.com.
